Marius Sudol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11261941/publications.pdf Version: 2024-02-01

Μλαιμς Shool

#	Article	IF	CITATIONS
1	The Hippo pathway regulates axis formation and morphogenesis in <i>Hydra</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
2	miR-582-5p Is a Tumor Suppressor microRNA Targeting the Hippo-YAP/TAZ Signaling Pathway in Non-Small Cell Lung Cancer. Cancers, 2021, 13, 756.	1.7	21
3	Angiomotin Counteracts the Negative Regulatory Effect of Host WWOX on Viral PPxY-Mediated Egress. Journal of Virology, 2021, 95, .	1.5	3
4	Evidence for discrete modes of YAP1 signaling via mRNA splice isoforms in development and diseases. Genomics, 2021, 113, 1349-1365.	1.3	14
5	SARS-CoV-2 Envelope (E) protein interacts with PDZ-domain-2 of host tight junction protein ZO1. PLoS ONE, 2021, 16, e0251955.	1.1	56
6	Common and Unique Transcription Signatures of YAP and TAZ in Gastric Cancer Cells. Cancers, 2020, 12, 3667.	1.7	11
7	Viruses go modular. Journal of Biological Chemistry, 2020, 295, 4604-4616.	1.6	15
8	Modular mimicry and engagement of the Hippo pathway by Marburg virus VP40: Implications for filovirus biology and budding. PLoS Pathogens, 2020, 16, e1008231.	2.1	11
9	YAP-dependent necrosis occurs in early stages of Alzheimer's disease and regulates mouse model pathology. Nature Communications, 2020, 11, 507.	5.8	62
10	Largeâ€scale survey and database of high affinity ligands for peptide recognition modules. Molecular Systems Biology, 2020, 16, e9310.	3.2	22
11	The Role of YAP Oncogene in Metastasis and Mechanoâ€medicine. FASEB Journal, 2019, 33, 620.12.	0.2	0
12	WW and C2 domain–containing proteins regulate hepatic cell differentiation and tumorigenesis through the hippo signaling pathway. Hepatology, 2018, 67, 1546-1559.	3.6	30
13	Biophysical studies and NMR structure of YAP2 WW domain - LATS1 PPxY motif complexes reveal the basis of their interaction. Oncotarget, 2018, 9, 8068-8080.	0.8	14
14	YAP Regulates Actin Dynamics through ARHGAP29 and Promotes Metastasis. Cell Reports, 2017, 19, 1495-1502.	2.9	188
15	Roles of RUNX in Hippo Pathway Signaling. Advances in Experimental Medicine and Biology, 2017, 962, 435-448.	0.8	36
16	Ubiquitin Ligase WWP1 Interacts with Ebola Virus VP40 To Regulate Egress. Journal of Virology, 2017, 91, .	1.5	37
17	Developmental YAPdeltaC determines adult pathology in a model of spinocerebellar ataxia type 1. Nature Communications, 2017, 8, 1864.	5.8	12
18	Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress. PLoS Pathogens, 2017, 13, e1006132.	2.1	43

#	Article	IF	CITATIONS
19	Framework to function: mechanosensitive regulators of gene transcription. Cellular and Molecular Biology Letters, 2016, 21, 28.	2.7	62
20	ITCH E3 Ubiquitin Ligase Interacts with Ebola Virus VP40 To Regulate Budding. Journal of Virology, 2016, 90, 9163-9171.	1.5	60
21	Targeting TEAD/YAP-transcription-dependent necrosis, TRIAD, ameliorates Huntington's disease pathology. Human Molecular Genetics, 2016, 25, ddw303.	1.4	38
22	Phosphorylation of Tyr188 in the WW domain of YAP1 plays an essential role in YAP1-induced cellular transformation. Cell Cycle, 2016, 15, 2497-2505.	1.3	13
23	Changes in the folding landscape of the WW domain provide a molecular mechanism for an inherited genetic syndrome. Scientific Reports, 2016, 6, 30293.	1.6	13
24	WW Domains of the Yes-Kinase-Associated-Protein (YAP) Transcriptional Regulator Behave as Independent Units with Different Binding Preferences for PPxY Motif-Containing Ligands. PLoS ONE, 2015, 10, e0113828.	1.1	43
25	Allostery mediates ligand binding to WWOX tumor suppressor via a conformational switch. Journal of Molecular Recognition, 2015, 28, 220-231.	1.1	7
26	TAZ Protein Accumulation Is Negatively Regulated by YAP Abundance in Mammalian Cells. Journal of Biological Chemistry, 2015, 290, 27928-27938.	1.6	59
27	ZO Proteins Redundantly Regulate the Transcription Factor DbpA/ZONAB. Journal of Biological Chemistry, 2014, 289, 22500-22511.	1.6	38
28	The Hippo signal transduction network in skeletal and cardiac muscle. Science Signaling, 2014, 7, re4.	1.6	74
29	Pro-Invasive Activity of the Hippo Pathway Effectors YAP and TAZ in Cutaneous Melanoma. Journal of Investigative Dermatology, 2014, 134, 123-132.	0.3	122
30	Ligand binding to <scp>WW</scp> tandem domains of <scp>YAP</scp> 2 transcriptional regulator is under negative cooperativity. FEBS Journal, 2014, 281, 5532-5551.	2.2	16
31	Neuregulin 1–activated ERBB4 as a "dedicated―receptor for the Hippo-YAP pathway. Science Signaling, 2014, 7, pe29.	1.6	16
32	Characterizing WW Domain Interactions of Tumor Suppressor WWOX Reveals Its Association with Multiprotein Networks. Journal of Biological Chemistry, 2014, 289, 8865-8880.	1.6	102
33	Molecular basis of the binding of YAP transcriptional regulator to the ErbB4 receptor tyrosine kinase. Biochimie, 2014, 101, 192-202.	1.3	16
34	YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Letters, 2014, 588, 2663-2670.	1.3	354
35	Yes-Associated Protein (YAP) Modulates Oncogenic Features and Radiation Sensitivity in Endometrial Cancer. PLoS ONE, 2014, 9, e100974.	1.1	42
36	Molecular Origin of the Binding of WWOX Tumor Suppressor to ErbB4 Receptor Tyrosine Kinase. Biochemistry, 2013, 52, 9223-9236.	1.2	26

#	Article	IF	CITATIONS
37	Death of a Titan. Science Signaling, 2013, 6, eg6.	1.6	4
38	The p130 Isoform of Angiomotin Is Required for Yap-Mediated Hepatic Epithelial Cell Proliferation and Tumorigenesis. Science Signaling, 2013, 6, ra77.	1.6	135
39	PML Surfs into HIPPO Tumor Suppressor Pathway. Frontiers in Oncology, 2013, 3, 36.	1.3	14
40	Yes-associated Protein (YAP) Promotes Cell Survival by Inhibiting Proapoptotic Dendrin Signaling. Journal of Biological Chemistry, 2013, 288, 17057-17062.	1.6	57
41	YAP1 Uses Its Modular Protein Domains and Conserved Sequence Motifs to Orchestrate Diverse Repertoires of Signaling. , 2013, , 53-70.		2
42	Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cellular Signalling, 2012, 24, 2143-2165.	1.7	77
43	Biophysical Basis of the Binding of WWOX Tumor Suppressor to WBP1 and WBP2 Adaptors. Journal of Molecular Biology, 2012, 422, 58-74.	2.0	39
44	Molecular insights into the WW domain of the Golabi″toâ€Hall syndrome protein PQBP1. FEBS Letters, 2012, 586, 2795-2799.	1.3	30
45	Identification, basic characterization and evolutionary analysis of differentially spliced mRNA isoforms of human YAP1 gene. Gene, 2012, 509, 215-222.	1.0	86
46	WW Domains in the Heart of Smad Regulation. Structure, 2012, 20, 1619-1620.	1.6	10
47	Structures of YAP protein domains reveal promising targets for development of new cancer drugs. Seminars in Cell and Developmental Biology, 2012, 23, 827-833.	2.3	113
48	Biophysical Analysis of Binding of WW Domains of the YAP2 Transcriptional Regulator to PPXY Motifs within WBP1 and WBP2 Adaptors. Biochemistry, 2011, 50, 9616-9627.	1.2	30
49	YAP is a candidate oncogene for esophageal squamous cell carcinoma. Carcinogenesis, 2011, 32, 389-398.	1.3	207
50	Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochemical Journal, 2010, 432, 461-478.	1.7	180
51	Modularity in the Hippo signaling pathway. Trends in Biochemical Sciences, 2010, 35, 627-633.	3.7	141
52	TAZ interacts with zonula occludensâ€1 and â€2 proteins in a PDZâ€1 dependent manner. FEBS Letters, 2010, 584, 4175-4180.	1.3	79
53	Y65C Missense Mutation in the WW Domain of the Golabi-Ito-Hall Syndrome Protein PQBP1 Affects Its Binding Activity and Deregulates Pre-mRNA Splicing. Journal of Biological Chemistry, 2010, 285, 19391-19401.	1.6	53
54	Newcomers to the WW Domain-Mediated Network of the Hippo Tumor Suppressor Pathway. Genes and Cancer, 2010, 1, 1115-1118.	0.6	53

#	Article	IF	CITATIONS
55	HECT E3 Ubiquitin Ligase Nedd4-1 Ubiquitinates ACK and Regulates Epidermal Growth Factor (EGF)-Induced Degradation of EGF Receptor and ACK. Molecular and Cellular Biology, 2010, 30, 1541-1554.	1.1	71
56	YAP: At the crossroad between transformation and tumor suppression. Cell Cycle, 2009, 8, 49-57.	1.3	99
57	Protein kinase-X interacts with Pin-1 and Polycystin-1 during mouse kidney development. Kidney International, 2009, 76, 54-62.	2.6	14
58	Nuclear localization and proâ€apoptotic signaling of YAP2 require intact PDZâ€binding motif. Genes To Cells, 2009, 14, 607-615.	0.5	74
59	The Hippo Tumor Suppressor Pathway: A Brainstorming WorkshopA report on the research meeting "The Hippo Tumor Suppressor Pathway: A Brainstorming Workshop―sponsored mainly by the Regina Elena Cancer Center and the Nicola Foundation and held in Rome, Italy, on 22 and 23 April 2009 Science Signaling, 2009, 2, mr6	1.6	13
60	Mst2 and Lats Kinases Regulate Apoptotic Function of Yes Kinase-associated Protein (YAP). Journal of Biological Chemistry, 2008, 283, 27534-27546.	1.6	305
61	Kpm/Lats2 is linked to chemosensitivity of leukemic cells through the stabilization of p73. Blood, 2008, 112, 3856-3866.	0.6	56
62	Association of Wwox with ErbB4 in Breast Cancer. Cancer Research, 2007, 67, 9330-9336.	0.4	99
63	Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73. Journal of Cell Biology, 2006, 172, 589-604.	2.3	84
64	Competitive Binding of Proline-Rich Sequences by SH3, WW, and Other Functionally Related Protein Domains. , 2005, , 185-201.		2
65	WW or WoW: The WW domains in a union of bliss. IUBMB Life, 2005, 57, 773-778.	1.5	48
66	The WW Domain. , 2005, , 59-72.		7
67	The GYF Domain. , 2005, , 103-116.		0
68	Phosphoserine/Threonine Binding Domains. , 2005, , 163-179.		3
69	WW Domain–Containing Proteins, WWOX and YAP, Compete for Interaction with ErbB-4 and Modulate Its Transcriptional Function. Cancer Research, 2005, 65, 6764-6772.	0.4	201
70	c-Yes response to growth factor activation. Growth Factors, 2005, 23, 263-272.	0.5	19
71	Common Mechanism of Ligand Recognition by Group II/III WW Domains. Journal of Biological Chemistry, 2004, 279, 31833-31841.	1.6	61
72	A map of WW domain family interactions. Proteomics, 2004, 4, 643-655.	1.3	122

#	Article	IF	CITATIONS
73	Localization of Phospho-β-dystroglycan (pY892) to an Intracellular Vesicular Compartment in Cultured Cells and Skeletal Muscle Fibers in Vivoâ€. Biochemistry, 2003, 42, 7110-7123.	1.2	48
74	Akt Phosphorylates the Yes-Associated Protein, YAP, to Induce Interaction with 14-3-3 and Attenuation of p73-Mediated Apoptosis. Molecular Cell, 2003, 11, 11-23.	4.5	723
75	WW Domain-containing Protein YAP Associates with ErbB-4 and Acts as a Co-transcriptional Activator for the Carboxyl-terminal Fragment of ErbB-4 That Translocates to the Nucleus. Journal of Biological Chemistry, 2003, 278, 33334-33341.	1.6	404
76	WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Letters, 2002, 513, 30-37.	1.3	431
77	Normalization of nomenclature for peptide motifs as ligands of modular protein domains. FEBS Letters, 2002, 513, 141-144.	1.3	118
78	Interaction between Mutant Ataxin-1 and PQBP-1 Affects Transcription and Cell Death. Neuron, 2002, 34, 701-713.	3.8	182
79	The WW domain: Linking cell signalling to the membrane cytoskeleton. Cellular Signalling, 2002, 14, 183-189.	1.7	170
80	PQBP-1 (Np/PQ): a polyglutamine tract-binding and nuclear inclusion-forming protein. Brain Research Bulletin, 2001, 56, 273-280.	1.4	27
81	Functions of WW domains in the nucleus. FEBS Letters, 2001, 490, 190-195.	1.3	148
82	Tyrosine Phosphorylation of β-Dystroglycan at Its WW Domain Binding Motif, PPxY, Recruits SH2 Domain Containing Proteinsâ€. Biochemistry, 2001, 40, 14585-14592.	1.2	87
83	The β-Amyloid Precursor Protein APP Is Tyrosine-phosphorylated in Cells Expressing a Constitutively Active Form of the Abl Protoncogene. Journal of Biological Chemistry, 2001, 276, 19787-19792.	1.6	111
84	Genetic interactions between the ESS1 prolyl-isomerase and the RSP5 ubiquitin ligase reveal opposing effects on RNA polymerase II function. Current Genetics, 2001, 40, 234-242.	0.8	32
85	Yes-associated Protein and p53-binding Protein-2 Interact through Their WW and SH3 Domains. Journal of Biological Chemistry, 2001, 276, 14514-14523.	1.6	118
86	Physical Interaction with Yes-associated Protein Enhances p73 Transcriptional Activity. Journal of Biological Chemistry, 2001, 276, 15164-15173.	1.6	368
87	Structure of a WW domain containing fragment of dystrophin in complex with beta-dystroglycan. Nature Structural Biology, 2000, 7, 634-638.	9.7	249
88	The importance of being proline: the interaction of prolineâ€rich motifs in signaling proteins with their cognate domains. FASEB Journal, 2000, 14, 231-241.	0.2	1,100
89	Rsp5 WW Domains Interact Directly with the Carboxyl-terminal Domain of RNA Polymerase II. Journal of Biological Chemistry, 2000, 275, 20562-20571.	1.6	75
90	Caveolin-3 Directly Interacts with the C-terminal Tail of β-Dystroglycan. Journal of Biological Chemistry, 2000, 275, 38048-38058.	1.6	181

#	Article	IF	CITATIONS
91	Evidence that Dim1 associates with proteins involved in pre-mRNA splicing, and delineation of residues essential for Dim1 interactions with hnRNP F and Npw38/PQBP-1. Gene, 2000, 257, 33-43.	1.0	68
92	NeW Wrinkles for an Old Domain. Cell, 2000, 103, 1001-1004.	13.5	337
93	Contribution of the different modules in the utrophin carboxy-terminal region to the formation and regulation of the DAP complex. FEBS Letters, 2000, 471, 229-234.	1.3	26
94	The SH3 and SH2 domains are capable of directing specificity in protein interactions between the non-receptor tyrosine kinases cSrc and cYes. Oncogene, 2000, 19, 155-160.	2.6	27
95	Yes-Associated Protein 65 Localizes P62c-Yes to the Apical Compartment of Airway Epithelia by Association with Ebp50. Journal of Cell Biology, 1999, 147, 879-890.	2.3	183
96	A Single Point Mutation in a Group I WW Domain Shifts Its Specificity to That of Group II WW Domains. Journal of Biological Chemistry, 1999, 274, 17284-17289.	1.6	63
97	Characterization of the Structure and Function of W → F WW Domain Variants: Identification of a Natively Unfolded Protein That Folds upon Ligand Bindingâ€. Biochemistry, 1999, 38, 14338-14351.	1.2	79
98	WW: An isolated threeâ€stranded antiparallel βâ€sheet domain that unfolds and refolds reversibly; evidence for a structured hydrophobic cluster in urea and GdnHCl and a disordered thermal unfolded state. Protein Science, 1999, 8, 841-853.	3.1	137
99	A Proline-Rich Motif within the Matrix Protein of Vesicular Stomatitis Virus and Rabies Virus Interacts with WW Domains of Cellular Proteins: Implications for Viral Budding. Journal of Virology, 1999, 73, 2921-2929.	1.5	249
100	Stimulation of the protein tyrosine kinase c-Yes but not c-Src by neurotrophins in human brain-metastatic melanoma cells. Oncogene, 1998, 16, 3253-3260.	2.6	50
101	From Src Homology domains to other signaling modules: proposal of the `protein recognition code'. Oncogene, 1998, 17, 1469-1474.	2.6	229
102	Proteins Implicated In Alzheimer Disease. Advances in Experimental Medicine and Biology, 1998, , 161-180.	0.8	10
103	Interaction of the Phosphotyrosine Interaction/Phosphotyrosine Binding-related Domains of Fe65 with Wild-type and Mutant Alzheimer's β-Amyloid Precursor Proteins. Journal of Biological Chemistry, 1997, 272, 6399-6405.	1.6	141
104	Interaction of WW Domains with Hematopoietic Transcription Factor p45/NF-E2 and RNA Polymerase II. Journal of Biological Chemistry, 1997, 272, 24105-24108.	1.6	61
105	Using Molecular Repertoires to Identify High-Affinity Peptide Ligands of the WW Domain of Human and Mouse YAP. Biological Chemistry, 1997, 378, 531-7.	1.2	63
106	The WW Domain of Neural Protein FE65 Interacts with Proline-rich Motifs in Mena, the Mammalian Homolog of DrosophilaEnabled. Journal of Biological Chemistry, 1997, 272, 32869-32877.	1.6	217
107	Characterization of the WW Domain of Human Yes-associated Protein and Its Polyproline-containing Ligands. Journal of Biological Chemistry, 1997, 272, 17070-17077.	1.6	162
108	The WW Domain and its Proline-Rich Ligand in Alzheimer's Disease and Muscular Dystrophy. Expert Opinion on Therapeutic Targets, 1997, 1, 81-84.	1.0	3

#	Article	IF	CITATIONS
109	Towards prediction of cognate complexes between the WW domain and proline-rich ligands. FEBS Letters, 1996, 384, 1-8.	1.3	102
110	Structure and function of the WW domain. Progress in Biophysics and Molecular Biology, 1996, 65, 113-132.	1.4	269
111	The WW module competes with the SH3 domain?. Trends in Biochemical Sciences, 1996, 21, 161-163.	3.7	109
112	WW domains and retrovirus budding. Nature, 1996, 381, 744-745.	13.7	132
113	Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature, 1996, 382, 646-649.	13.7	426
114	The WW domain binds polyprolines and is involved in human diseases. Experimental and Molecular Medicine, 1996, 28, 65-69.	3.2	7
115	Identification and characterization of protein ligands to the WW domain by western ligand blotting. Techniques in Protein Chemistry, 1996, 7, 3-12.	0.3	4
116	Characterization of the Mammalian YAP (Yes-associated Protein) Gene and Its Role in Defining a Novel Protein Module, the WW Domain. Journal of Biological Chemistry, 1995, 270, 14733-14741.	1.6	298
117	Characterization of a novel protein-binding module - the WW domain. FEBS Letters, 1995, 369, 67-71.	1.3	326
118	The WW domain: a signalling site in dystrophin?. Trends in Biochemical Sciences, 1994, 19, 531-533.	3.7	373
119	Neuronal localization of the tyrosine-specific protein kinase p62c-yes in rat basal ganglia. Neurochemical Research, 1993, 18, 43-46.	1.6	7
120	Proto-oncogenes and signaling processes in neural tissues. Neurochemistry International, 1993, 22, 369-384.	1.9	42