
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11261375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Footshock-Induced Abstinence from Compulsive Methamphetamine Self-administration in Rat Model Is Accompanied by Increased Hippocampal Expression of Cannabinoid Receptors (CB1 and CB2). Molecular Neurobiology, 2022, 59, 1238-1248.	4.0	4
2	Oxycodone self-administration activates the mitogen-activated protein kinase/ mitogen- and stress-activated protein kinase (MAPK-MSK) signaling pathway in the rat dorsal striatum. Scientific Reports, 2021, 11, 2567.	3.3	8
3	Footshockâ€induced abstinence from compulsive methamphetamine selfâ€administration is associated with increased expression of cannabinoid receptors (CB1 and CB2) in the rat hippocampus. FASEB Journal, 2021, 35, .	0.5	Ο
4	Elevated body fat increases amphetamine accumulation in brain: evidence from genetic and diet-induced forms of adiposity. Translational Psychiatry, 2021, 11, 427.	4.8	1
5	A Single Prior Injection of Methamphetamine Enhances Methamphetamine Self-Administration (SA) and Blocks SA-Induced Changes in DNA Methylation and mRNA Expression of Potassium Channels in the Rat Nucleus Accumbens. Molecular Neurobiology, 2020, 57, 1459-1472.	4.0	24
6	Neurochemical and behavioral comparisons of contingent and non-contingent methamphetamine exposure following binge or yoked long-access self-administration paradigms. Psychopharmacology, 2020, 237, 1989-2005.	3.1	19
7	Sex Differences in Escalated Methamphetamine Self-Administration and Altered Gene Expression Associated With Incubation of Methamphetamine Seeking. International Journal of Neuropsychopharmacology, 2019, 22, 710-723.	2.1	38
8	Molecular Adaptations in the Rat Dorsal Striatum and Hippocampus Following Abstinence-Induced Incubation of Drug Seeking After Escalated Oxycodone Self-Administration. Molecular Neurobiology, 2019, 56, 3603-3615.	4.0	39
9	Escalated Oxycodone Self-Administration and Punishment: Differential Expression of Opioid Receptors and Immediate Early Genes in the Rat Dorsal Striatum and Prefrontal Cortex. Frontiers in Neuroscience, 2019, 13, 1392.	2.8	22
10	Methamphetamine Induces TET1- and TET3-Dependent DNA Hydroxymethylation of Crh and Avp Genes in the Rat Nucleus Accumbens. Molecular Neurobiology, 2018, 55, 5154-5166.	4.0	38
11	Compulsive methamphetamine taking under punishment is associated with greater cue-induced drug seeking in rats. Behavioural Brain Research, 2017, 326, 265-271.	2.2	31
12	Compulsive methamphetamine taking in the presence of punishment is associated with increased oxytocin expression in the nucleus accumbens of rats. Scientific Reports, 2017, 7, 8331.	3.3	26
13	Increased expression of proenkephalin and prodynorphin mRNAs in the nucleus accumbens of compulsive methamphetamine taking rats. Scientific Reports, 2016, 6, 37002.	3.3	22
14	An Acute Methamphetamine Injection Downregulates the Expression of Several Histone Deacetylases (HDACs) in the Mouse Nucleus Accumbens: Potential Regulatory Role of HDAC2 Expression. Neurotoxicity Research, 2016, 30, 32-40.	2.7	19
15	CAMKII-conditional deletion of histone deacetylase 2 potentiates acute methamphetamine-induced expression of immediate early genes in the mouse nucleus accumbens. Scientific Reports, 2015, 5, 13396.	3.3	16
16	l-Dopa induced dyskinesias in Parkinsonian mice: Disease severity or l-Dopa history. Brain Research, 2015, 1618, 261-269.	2.2	19
17	Incubation of Methamphetamine and Palatable Food Craving after Punishment-Induced Abstinence. Neuropsychopharmacology, 2014, 39, 2008-2016.	5.4	107
18	Methamphetamine Downregulates Striatal Glutamate Receptors via Diverse Epigenetic Mechanisms. Biological Psychiatry, 2014, 76, 47-56.	1.3	109

#	Article	IF	CITATIONS
19	Differential effects of binge methamphetamine injections on the mRNA expression of histone deacetylases (HDACs) in the rat striatum. NeuroToxicology, 2014, 45, 178-184.	3.0	27
20	Enhanced Upregulation of CRH mRNA Expression in the Nucleus Accumbens of Male Rats after a Second Injection of Methamphetamine Given Thirty Days Later. PLoS ONE, 2014, 9, e84665.	2.5	35
21	Genome-wide profiling identifies a subset of methamphetamine (METH)-induced genes associated with METH-induced increased H4K5Ac binding in the rat striatum. BMC Genomics, 2013, 14, 545.	2.8	43
22	Dietary energy intake modifies brainstem autonomic dysfunction caused by mutant α-synuclein. Neurobiology of Aging, 2013, 34, 928-935.	3.1	58
23	CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiology of Disease, 2013, 58, 132-143.	4.4	115
24	Neuronal Expression of Familial Parkinson's Disease A53T α-Synuclein Causes Early Motor Impairment, Reduced Anxiety and Potential Sleep Disturbances in Mice. Journal of Parkinson's Disease, 2013, 3, 215-229.	2.8	44
25	Methamphetamine Causes Differential Alterations in Gene Expression and Patterns of Histone Acetylation/Hypoacetylation in the Rat Nucleus Accumbens. PLoS ONE, 2012, 7, e34236.	2.5	111
26	Involvement of Dopamine Receptors in Binge Methamphetamine-Induced Activation of Endoplasmic Reticulum and Mitochondrial Stress Pathways. PLoS ONE, 2011, 6, e28946.	2.5	78
27	Chronic methamphetamine exposure suppresses the striatal expression of members of multiple families of immediate early genes (IEGs) in the rat: normalization by an acute methamphetamine injection. Psychopharmacology, 2011, 215, 353-365.	3.1	47
28	(Â)-3,4-Methylenedioxymethamphetamine and Metabolite Disposition in Plasma and Striatum of Wild-Type and Multidrug Resistance Protein 1a Knock-Out Mice. Journal of Analytical Toxicology, 2011, 35, 470-480.	2.8	10
29	Methamphetamine Preconditioning Causes Differential Changes in Striatal Transcriptional Responses to Large Doses of the Drug. Dose-Response, 2011, 9, dose-response.1.	1.6	25
30	Chronic Methamphetamine Administration Causes Differential Regulation of Transcription Factors in the Rat Midbrain. PLoS ONE, 2011, 6, e19179.	2.5	35
31	Differential histone modifications induced by chronic methamphetamine exposure in the rat striatum. FASEB Journal, 2011, 25, 896.6.	0.5	0
32	Mice Lacking Multidrug Resistance Protein 1a Show Altered Dopaminergic Responses to Methylenedioxymethamphetamine (MDMA) in Striatum. Neurotoxicity Research, 2010, 18, 200-209.	2.7	6
33	Differential effects of methamphetamine and SCH23390 on the expression of members of IEG families of transcription factors in the rat striatum. Brain Research, 2010, 1318, 1-10.	2.2	36
34	Dietary restriction mitigates cocaineâ€induced alterations of olfactory bulb cellular plasticity and gene expression, and behavior. Journal of Neurochemistry, 2010, 114, 323-334.	3.9	5
35	Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat. PLoS ONE, 2010, 5, e8790.	2.5	119
36	Methamphetamine-Induced Dopamine-Independent Alterations in Striatal Gene Expression in the 6-Hydroxydopamine Hemiparkinsonian Rats. PLoS ONE, 2010, 5, e15643.	2.5	25

#	Article	IF	CITATIONS
37	Monoamine Oxidases Regulate Telencephalic Neural Progenitors in Late Embryonic and Early Postnatal Development. Journal of Neuroscience, 2010, 30, 10752-10762.	3.6	41
38	Methamphetamine Preconditioning Alters Midbrain Transcriptional Responses to Methamphetamine-Induced Injury in the Rat Striatum. PLoS ONE, 2009, 4, e7812.	2.5	49
39	Methamphetamine Preconditioning: Differential Protective Effects on Monoaminergic Systems in the Rat Brain. Neurotoxicity Research, 2009, 15, 252-259.	2.7	37
40	Methamphetamine treatment causes delayed decrease in novelty-induced locomotor activity in mice. Neuroscience Research, 2009, 65, 160-165.	1.9	17
41	Methamphetamine Induces Dopamine D1 Receptor-Dependent Endoplasmic Reticulum Stress-Related Molecular Events in the Rat Striatum. PLoS ONE, 2009, 4, e6092.	2.5	76
42	Environmental enrichment during adolescence regulates gene expression in the striatum of mice. Brain Research, 2008, 1222, 31-41.	2.2	46
43	Amphetamine causes dopamine depletion and cell death in the mouse olfactory bulb. European Journal of Pharmacology, 2008, 589, 94-97.	3.5	17
44	Sertraline slows disease progression and increases neurogenesis in N171-82Q mouse model of Huntington's disease. Neurobiology of Disease, 2008, 30, 312-322.	4.4	129
45	Sex-Dependent Metabolic, Neuroendocrine, and Cognitive Responses to Dietary Energy Restriction and Excess. Endocrinology, 2007, 148, 4318-4333.	2.8	167
46	Methamphetamine Administration Causes Death of Dopaminergic Neurons in the Mouse Olfactory Bulb. Biological Psychiatry, 2007, 61, 1235-1243.	1.3	62
47	Neonatal dopamine depletion induces changes in morphogenesis and gene expression in the developing cortex. Neurotoxicity Research, 2007, 11, 107-130.	2.7	26
48	Neurotoxic doses of methamphetamine cause neurocognitive abnormalities in mice. FASEB Journal, 2007, 21, A1174.	0.5	0
49	Serial Analysis of Gene Expression in the Rat Striatum Following Methamphetamine Administration. Annals of the New York Academy of Sciences, 2006, 1074, 13-30.	3.8	7
50	Amphetamine induces apoptosis of medium spiny striatal projection neurons via the mitochondriaâ€dependent pathway. FASEB Journal, 2005, 19, 1-22.	0.5	67
51	Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 868-873.	7.1	208
52	Neuropeptide Y Protects against Methamphetamine-Induced Neuronal Apoptosis in the Mouse Striatum. Journal of Neuroscience, 2005, 25, 5273-5279.	3.6	86
53	Methamphetamine induces neuronal apoptosis via crossâ€ŧalks between endoplasmic reticulum and mitochondriaâ€dependent death cascades. FASEB Journal, 2004, 18, 238-251.	0.5	255
54	Paroxetine retards disease onset and progression in Huntingtin mutant mice. Annals of Neurology, 2004, 55, 590-594.	5.3	84

#	Article	IF	CITATIONS
55	Methamphetamine Causes Coordinate Regulation of Src, Cas, Crk, and the Jun N-Terminal Kinase–Jun Pathway. Molecular Pharmacology, 2002, 61, 1124-1131.	2.3	63
56	cDNA array analysis of gene expression profiles in the striata of wildâ€ŧype and Cu/Zn superoxide dismutase transgenic mice treated with neurotoxic doses of amphetamine. FASEB Journal, 2002, 16, 1379-1388.	0.5	19
57	Analysis of Ecstasy (MDMA)â€induced transcriptional responses in the rat cortex. FASEB Journal, 2002, 16, 1887-1894.	0.5	31
58	Mice with Partial Deficiency of c-Jun Show Attenuation of Methamphetamine-Induced Neuronal Apoptosis. Molecular Pharmacology, 2002, 62, 993-1000.	2.3	49
59	p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Annals of Neurology, 2002, 52, 597-606.	5.3	198
60	Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease. Journal of Neurochemistry, 2002, 80, 101-110.	3.9	361
61	Distinct gene expression signatures in the striata of wild-type and heterozygous c-fos knockout mice following methamphetamine administration: Evidence from cDNA array analyses. Synapse, 2002, 44, 211-226.	1.2	35
62	Analysis of methamphetamine-induced changes in the expression of integrin family members in the cortex of wild-type and c-fos knockout mice. Neurotoxicity Research, 2002, 4, 617-623.	2.7	5
63	Characterization of Human Cleaved N-CAM and Association with Schizophrenia. Experimental Neurology, 2001, 172, 29-46.	4.1	75
64	Methamphetamine increases expression of the apoptotic c-myc and l-myc genes in the mouse brain. Molecular Brain Research, 2001, 90, 202-204.	2.3	14
65	Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: Evidence from cDNA array. Synapse, 2001, 41, 40-48.	1.2	99
66	Delta opioid peptide [D-Ala2, D-Leu5]enkephalin causes a near complete blockade of the neuronal damage induced by a single high dose of methamphetamine: Examining the role of p53. Synapse, 2001, 39, 305-312.	1.2	20
67	Methamphetamine-Induced Neurotoxicity Is Attenuated in Transgenic Mice with a Null Mutation for Interleukin-6. Molecular Pharmacology, 2000, 58, 1247-1256.	2.3	124
68	Null Mutation of c-fos Causes Exacerbation of Methamphetamine-Induced Neurotoxicity. Journal of Neuroscience, 1999, 19, 10107-10115.	3.6	104
69	Neuroadaptations in the dopaminergic system after active self-administration but not after passive administration of methamphetamine. European Journal of Pharmacology, 1999, 371, 123-135.	3.5	115
70	Methamphetamine-Induced Changes in Antioxidant Enzymes and Lipid Peroxidation in Copper/Zinc-Superoxide Dismutase Transgenic Mice. Annals of the New York Academy of Sciences, 1998, 844, 92-102.	3.8	120
71	Effects of toxic doses of methamphetamine (METH) on dopamine D1 receptors in the mouse brain. Brain Research, 1998, 786, 240-242.	2.2	18
72	Differential toxic effects of methamphetamine (METH) and methylenedioxymethamphetamine (MDMA) in multidrug-resistant (mdr1a) knockout mice. Brain Research, 1997, 769, 340-346.	2.2	49

#	Article	IF	CITATIONS
73	Differential Reinforcing Effects of Cocaine and GBR-12909: Biochemical Evidence for Divergent Neuroadaptive Changes in the Mesolimbic Dopaminergic System. Journal of Neuroscience, 1996, 16, 7416-7427.	3.6	78
74	Autoradiographic evidence for methamphetamine-induced striatal dopaminergic loss in mouse brain: attenuation in CuZn-superoxide dismutase transgenic mice. Brain Research, 1996, 714, 95-103.	2.2	112
75	AP-1 DNA-binding activation by methamphetamine involves oxidative stress. , 1996, 24, 213-217.		25
76	Superoxide radicals mediate the biochemical effects of methylenedioxymethamphetamine (MDMA): Evidence from using CuZn-superoxide dismutase transgenic mice. Synapse, 1995, 21, 169-176.	1.2	78
77	Methamphetamine-induced serotonin neurotoxicity is mediated by superoxide radicals. Brain Research, 1995, 677, 345-347.	2.2	79
78	Transgenic superoxide dismutase mice differ in opioid-induced analgesia. European Journal of Pharmacology, 1995, 283, 227-232.	3.5	9
79	CuZn-superoxide dismutase (CuZnSOD) transgenic mice show resistance to the lethal effects of methylenedioxyamphetamine (MDA) and of methylenedioxymethamphetamine (MDMA). Brain Research, 1994, 655, 259-262.	2.2	92