Christian Sköld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/112600/publications.pdf Version: 2024-02-01

<u>CHDISTIAN Skã</u>un

#	Article	IF	CITATIONS
1	Organic reactivity from mechanism to machine learning. Nature Reviews Chemistry, 2021, 5, 240-255.	30.2	88
2	Computational studies of molecular pre-organization through macrocyclization: Conformational distribution analysis of closely related non-macrocyclic and macrocyclic analogs. Bioorganic and Medicinal Chemistry, 2021, 49, 116399.	3.0	3
3	Relative Strength of Common Directing Groups in Palladium-Catalyzed Aromatic Câ^'H Activation. IScience, 2019, 20, 373-391.	4.1	34
4	Synthesis and preclinical evaluation of the CRTH2 antagonist [11C]MK-7246 as a novel PET tracer and potential surrogate marker for pancreatic beta-cell mass. Nuclear Medicine and Biology, 2019, 71, 1-10.	0.6	10
5	High affinity rigidified AT2 receptor ligands with indane scaffolds. MedChemComm, 2019, 10, 2146-2160.	3.4	6
6	An imidazole based H-Phe-Phe-NH 2 peptidomimetic with anti-allodynic effect in spared nerve injury mice. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2446-2450.	2.2	4
7	Microwave-Assisted Branching Cascades: A Route to Diverse 3,4-Dihydroquinazolinone-Embedded Polyheterocyclic Scaffolds. Organic Letters, 2016, 18, 5392-5395.	4.6	14
8	3.3 Strategies for Conversion of Peptides to Peptidomimetic Drugs. , 2015, , 245-274.		0
9	Interconversion of Functional Activity by Minor Structural Alterations in Nonpeptide AT ₂ Receptor Ligands. ACS Medicinal Chemistry Letters, 2015, 6, 178-182.	2.8	15
10	Toward a Benchmarking Data Set Able to Evaluate Ligand- and Structure-based Virtual Screening Using Public HTS Data. Journal of Chemical Information and Modeling, 2015, 55, 343-353.	5.4	23
11	Efficient and Selective Palladiumâ€Catalysed Câ€3 Urea Couplings to 3,5â€Dichloroâ€2(1 <i>H</i>)â€pyrazinone European Journal of Organic Chemistry, 2015, 2015, 978-986.	^{S.} 2.4	10
12	Virtual Screening for Transition State Analogue Inhibitors of IRAP Based on Quantum Mechanically Derived Reaction Coordinates. Journal of Chemical Information and Modeling, 2015, 55, 1984-1993.	5.4	9
13	Inhibition of Insulinâ€Regulated Aminopeptidase (IRAP) by Arylsulfonamides. ChemistryOpen, 2014, 3, 256-263.	1.9	20
14	Palladium(II)-Catalyzed Desulfitative Synthesis of Aryl Ketones from Sodium Arylsulfinates and Nitriles: Scope, Limitations, and Mechanistic Studies. Journal of Organic Chemistry, 2014, 79, 12018-12032.	3.2	63
15	Aminocarbonylation of 4-lodo-1 <i>H</i> -imidazoles with an Amino Acid Amide Nucleophile: Synthesis of Constrained H-Phe-Phe-NH ₂ Analogues. Journal of Organic Chemistry, 2013, 78, 12251-12256.	3.2	16
16	Theoretical and Experimental Investigation of Palladium(II)-Catalyzed Decarboxylative Addition of Arenecarboxylic Acid to Nitrile. Organometallics, 2013, 32, 490-497.	2.3	22
17	One-Pot, Two-Step, Microwave-Assisted Palladium-Catalyzed Conversion of Aryl Alcohols to Aryl Fluorides via Aryl Nonaflates. Journal of Organic Chemistry, 2013, 78, 4184-4189.	3.2	34
18	Constrained H-Phe-Phe-NH ₂ Analogues with High Affinity to the Substance P 1–7 Binding Site and with Improved Metabolic Stability and Cell Permeability. Journal of Medicinal Chemistry, 2013, 56, 4953-4965.	6.4	16

CHRISTIAN SKöLD

#	Article	IF	CITATIONS
19	Decarboxylative Palladium(II) atalyzed Synthesis of Aryl Amidines from Aryl Carboxylic Acids: Development and Mechanistic Investigation. Chemistry - A European Journal, 2013, 19, 13803-13810.	3.3	34
20	From the First Selective Non-Peptide AT ₂ Receptor Agonist to Structurally Related Antagonists. Journal of Medicinal Chemistry, 2012, 55, 2265-2278.	6.4	38
21	Virtual Screening Data Fusion Using Both Structure- and Ligand-Based Methods. Journal of Chemical Information and Modeling, 2012, 52, 225-232.	5.4	81
22	Transmetallation Versus βâ€Hydride Elimination: The Role of 1,4â€Benzoquinone in Chelationâ€Controlled Arylation Reactions with Arylboronic Acids. Chemistry - A European Journal, 2012, 18, 4714-4722.	3.3	39
23	Synthesis of functionalized furopyrazines as restricted dipeptidomimetics. Tetrahedron, 2012, 68, 3019-3029.	1.9	10
24	Discovery of Dipeptides with High Affinity to the Specific Binding Site for Substance P _{1â^'7} . Journal of Medicinal Chemistry, 2010, 53, 2383-2389.	6.4	17
25	Modeling binding modes of angiotensin II and pseudopeptide analogues to the AT2 receptor. Journal of Molecular Graphics and Modelling, 2008, 26, 991-1003.	2.4	8
26	Chemistry and folding of photomodulable peptides – stilbene and thioaurone-type candidates for conformational switches. Organic and Biomolecular Chemistry, 2008, 6, 4356.	2.8	27
27	Synthesis of a New Class of Druglike Angiotensin II C-Terminal Mimics with Affinity for the AT2Receptor. Journal of Medicinal Chemistry, 2007, 50, 1711-1715.	6.4	23
28	Development of CoMFA models of affinity and selectivity to angiotensin II type-1 and type-2 receptors. Journal of Molecular Graphics and Modelling, 2007, 26, 145-153.	2.4	2
29	Presentation of a Structurally Diverse and Commercially Available Drug Data Set for Correlation and Benchmarking Studies. Journal of Medicinal Chemistry, 2006, 49, 6660-6671.	6.4	48
30	Design, Synthesis, and Incorporation of a β-Turn Mimetic in Angiotensin II Forming Novel Pseudopeptides with Affinity for AT1and AT2Receptors. Journal of Medicinal Chemistry, 2006, 49, 6133-6137.	6.4	36
31	Angiotensin II Pseudopeptides Containing 1,3,5-Trisubstituted Benzene Scaffolds with High AT2Receptor Affinity. Journal of Medicinal Chemistry, 2005, 48, 6620-6631.	6.4	31
32	New Selective AT2Receptor Ligands Encompassing a ^ĵ 3-Turn Mimetic Replacing the Amino Acid Residues 4â^'5 of Angiotensin II Act as Agonists. Journal of Medicinal Chemistry, 2005, 48, 4009-4024.	6.4	41
33	A Selective AT2Receptor Ligand with a γ-Turn-Like Mimetic Replacing the Amino Acid Residues 4â^'5 of Angiotensin II. Journal of Medicinal Chemistry, 2004, 47, 859-870.	6.4	55