
Bradley G Ridoutt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1125893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Global Environmental Change, 2010, 20, 113-120.	3.6	480
2	The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). International Journal of Life Cycle Assessment, 2018, 23, 368-378.	2.2	471
3	Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. Journal of Cleaner Production, 2017, 159, 171-179.	4.6	383
4	Review of methods addressing freshwater use in life cycle inventory and impact assessment. International Journal of Life Cycle Assessment, 2013, 18, 707-721.	2.2	268
5	Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) "A critique on the water-scarcity weighted water footprint in LCAâ€, Ecological Indicators, 2017, 72, 352-359.	2.6	158
6	Carbon and water footprint tradeoffs in fresh tomato production. Journal of Cleaner Production, 2012, 32, 219-226.	4.6	154
7	LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. Journal of Cleaner Production, 2017, 161, 957-967.	4.6	141
8	A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. International Journal of Life Cycle Assessment, 2013, 18, 204-207.	2.2	132
9	Dietary Strategies to Reduce Environmental Impact: A Critical Review of the Evidence Base. Advances in Nutrition, 2017, 8, 933-946.	2.9	111
10	The water footprint of food waste: case study of fresh mango in Australia. Journal of Cleaner Production, 2010, 18, 1714-1721.	4.6	102
11	Water footprinting at the product brand level: case study and future challenges. Journal of Cleaner Production, 2009, 17, 1228-1235.	4.6	100
12	Water footprint of livestock: comparison of six geographically defined beef production systems. International Journal of Life Cycle Assessment, 2012, 17, 165-175.	2.2	93
13	Global guidance on environmental life cycle impact assessment indicators: progress and case study. International Journal of Life Cycle Assessment, 2016, 21, 429-442.	2.2	88
14	Reducing humanity's water footprint. Environmental Science & Technology, 2010, 44, 6019-6021.	4.6	86
15	Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. International Journal of Life Cycle Assessment, 2015, 20, 577-583.	2.2	84
16	Environmental performance of local food: trade-offs and implications for climate resilience in a developed city. Journal of Cleaner Production, 2016, 114, 420-430.	4.6	81
17	Overconsumption of Energy and Excessive Discretionary Food Intake Inflates Dietary Greenhouse Gas Emissions in Australia. Nutrients, 2016, 8, 690.	1.7	75
18	From Water-Use to Water-Scarcity Footprinting in Environmentally Extended Input–Output Analysis. Environmental Science & Technology, 2018, 52, 6761-6770.	4.6	72

#	Article	IF	CITATIONS
19	Greenhouse Gas Emissions and the Australian Diet—Comparing Dietary Recommendations with Average Intakes. Nutrients, 2014, 6, 289-303.	1.7	70
20	Carbon, water and land use footprints of beef cattle production systems in southern Australia. Journal of Cleaner Production, 2014, 73, 24-30.	4.6	69
21	Environmental relevance—the key to understanding water footprints. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1424; author reply E1425.	3.3	66
22	Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase. International Journal of Life Cycle Assessment, 2014, 19, 962-967.	2.2	62
23	Meat consumption and water scarcity: beware of generalizations. Journal of Cleaner Production, 2012, 28, 127-133.	4.6	61
24	Nitrogen footprint and nitrogen use efficiency of greenhouse tomato production in North China. Journal of Cleaner Production, 2019, 208, 285-296.	4.6	61
25	Water availability footprint of milk and milk products from large-scale dairy production systems in Northeast China. Journal of Cleaner Production, 2014, 79, 91-97.	4.6	53
26	Short communication: The water footprint of dairy products: Case study involving skim milk powder. Journal of Dairy Science, 2010, 93, 5114-5117.	1.4	52
27	Towards an Integrated Family of Footprint Indicators. Journal of Industrial Ecology, 2013, 17, 337-339.	2.8	51
28	Comparing Carbon and Water Footprints for Beef Cattle Production in Southern Australia. Sustainability, 2011, 3, 2443-2455.	1.6	50
29	Agricultural subsidies assessment of cropping system from environmental and economic perspectives in North China based on LCA. Ecological Indicators, 2019, 96, 351-360.	2.6	50
30	Water Footprint: Pitfalls on Common Ground. Environmental Science & amp; Technology, 2014, 48, 4-4.	4.6	43
31	Fresh tomato production for the Sydney market: An evaluation of options to reduce freshwater scarcity from agricultural water use. Agricultural Water Management, 2011, 100, 18-24.	2.4	40
32	A characterisation model to address the environmental impact of green water flows for water scarcity footprints. Science of the Total Environment, 2018, 626, 1210-1218.	3.9	40
33	Addressing the freshwater use of a Portuguese wine (â€~vinho verde') using different LCA methods. Journal of Cleaner Production, 2014, 68, 46-55.	4.6	38
34	Making Sense of the Minefield of Footprint Indicators. Environmental Science & Technology, 2015, 49, 2601-2603.	4.6	38
35	A contribution to the environmental impact assessment of green water flows. Journal of Cleaner Production, 2015, 93, 318-329.	4.6	38
36	Area of concern: a new paradigm in life cycle assessment for the development of footprint metrics. International Journal of Life Cycle Assessment, 2016, 21, 276-280.	2.2	38

#	Article	IF	CITATIONS
37	Identification of methodological challenges remaining in the assessment of a water scarcity footprint: a review. International Journal of Life Cycle Assessment, 2018, 23, 164-180.	2.2	38
38	Changes in Food Intake in Australia: Comparing the 1995 and 2011 National Nutrition Survey Results Disaggregated into Basic Foods. Foods, 2016, 5, 40.	1.9	34
39	A planetary boundary-based environmental footprint family: From impacts to boundaries. Science of the Total Environment, 2021, 785, 147383.	3.9	34
40	Fibre length and gibberellins A1 and A20 are decreased in Eucalyptus globules by acylcyclohexanedione injected into the stem. Physiologia Plantarum, 1996, 96, 559-566.	2.6	33
41	Life Cycle Assessment of China's agroecosystems. Ecological Indicators, 2018, 88, 341-350.	2.6	33
42	Diet Quality and Water Scarcity: Evidence from a Large Australian Population Health Survey. Nutrients, 2019, 11, 1846.	1.7	33
43	Fibre length and gibberellins A1 and A20 are decreased in Eucalyptus globulus by acylcyclohexanedione injected into the stem. Physiologia Plantarum, 1996, 96, 559-566.	2.6	32
44	Cropping Pattern Modifications Change Water Resource Demands in the Beijing Metropolitan Area. Journal of Integrative Agriculture, 2012, 11, 1914-1923.	1.7	31
45	Comparison of water use in global milk production for different typical farms. Agricultural Systems, 2014, 129, 9-21.	3.2	31
46	Feeding and housing the urban population: Environmental impacts at the peri-urban interface under different land-use scenarios. Land Use Policy, 2015, 48, 377-388.	2.5	31
47	Comparing volumetric and impact-oriented water footprint indicators: Case study of agricultural production in Lake Dianchi Basin, China. Ecological Indicators, 2018, 87, 14-21.	2.6	30
48	Water Footprint of Cereals and Vegetables for the Beijing Market. Journal of Industrial Ecology, 2014, 18, 40-48.	2.8	29
49	Balancing food production within the planetary water boundary. Journal of Cleaner Production, 2020, 253, 119900.	4.6	29
50	China's water for food under growing water scarcity. Food Security, 2015, 7, 933-949.	2.4	28
51	Potential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City. Frontiers in Nutrition, 2016, 3, 35.	1.6	28
52	Within-tree variation in cambial anatomy and xylem cell differentiation in Eucalyptus globulus. Trees - Structure and Function, 1993, 8, 18.	0.9	27
53	From ISO14046 to water footprint labeling: A case study of indicators applied to milk production in south-eastern Australia. Science of the Total Environment, 2017, 599-600, 14-19.	3.9	27
54	Quantification of the Processes of Secondary Xylem Fibre Development in Eucalyptus Globulus at Two Height Levels. IAWA Journal, 1994, 15, 417-424.	2.7	26

#	Article	IF	CITATIONS
55	Water-scarcity footprints and water productivities indicate unsustainable wheat production in China. Agricultural Water Management, 2019, 224, 105744.	2.4	25
56	Potential CHG emission benefits of Asparagopsis taxiformis feed supplement in Australian beef cattle feedlots. Journal of Cleaner Production, 2022, 337, 130499.	4.6	25
57	Cropland Footprints of Australian Dietary Choices. Nutrients, 2020, 12, 1212.	1.7	24
58	Short communication: climate impact of Australian livestock production assessed using the GWP* climate metric. Livestock Science, 2021, 246, 104459.	0.6	23
59	Diets within Environmental Limits: The Climate Impact of Current and Recommended Australian Diets. Nutrients, 2021, 13, 1122.	1.7	22
60	Building consensus on water use assessment of livestock production systems and supply chains: Outcome and recommendations from the FAO LEAP Partnership. Ecological Indicators, 2021, 124, 107391.	2.6	22
61	Impregnation of radiata pine wood by vacuum treatment II: effect of pre-steaming on wood structure and resin content. Journal of Wood Science, 1999, 45, 456-462.	0.9	21
62	Cropland footprints from the perspective of productive land scarcity, malnutrition-related health impacts and biodiversity loss. Journal of Cleaner Production, 2020, 260, 121150.	4.6	21
63	Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region. Water (Switzerland), 2015, 7, 7066-7077.	1.2	20
64	Climate Change Adaptation Strategy in the Food Industry—Insights from Product Carbon and Water Footprints. Climate, 2016, 4, 26.	1.2	20
65	A multi-indicator assessment of peri-urban agricultural production in Beijing, China. Ecological Indicators, 2019, 97, 350-362.	2.6	20
66	Climate neutral livestock production – A radiative forcing-based climate footprint approach. Journal of Cleaner Production, 2021, 291, 125260.	4.6	20
67	Location and technology options to reduce environmental impacts from agriculture. Journal of Cleaner Production, 2014, 81, 130-136.	4.6	19
68	The role of dairy foods in lower greenhouse gas emission and higher diet quality dietary patterns. European Journal of Nutrition, 2021, 60, 275-285.	1.8	19
69	Diets within planetary boundaries: What is the potential of dietary change alone?. Sustainable Production and Consumption, 2021, 28, 802-810.	5.7	19
70	Using systems modelling to explore the potential for root exudates to increase phosphorus use efficiency in cereal crops. Environmental Modelling and Software, 2013, 46, 50-60.	1.9	17
71	Pesticide Toxicity Hazard of Agriculture: Regional and Commodity Hotspots in Australia. Environmental Science & Technology, 2021, 55, 1290-1300.	4.6	17
72	Identification and Quantification of Cambial Region Hormones of Eucalyptus globulus. Plant and Cell Physiology, 1995, 36, 1143-1147.	1.5	16

#	Article	IF	CITATIONS
73	Life cycle assessment of phosphorus use efficient wheat grown in Australia. Agricultural Systems, 2013, 120, 2-9.	3.2	16
74	Climate adaptation of food value chains: the implications of varying consumer acceptance. Regional Environmental Change, 2017, 17, 93-103.	1.4	16
75	Impregnation of Radiata Pine Wood By Vacuum Treatment: Identification of flow Paths Using Fluorescent Dye and Confocal Microscopy. IAWA Journal, 1998, 19, 25-33.	2.7	15
76	Benchmarking consumptive water use of bovine milk production systems for 60 geographical regions: An implication for Global Food Security. Global Food Security, 2015, 4, 56-68.	4.0	15
77	Multi-indicator assessment of a water-saving agricultural engineering project in North Beijing, China. Agricultural Water Management, 2018, 200, 34-46.	2.4	14
78	Bringing nutrition and life cycle assessment together (nutritional LCA): opportunities and risks. International Journal of Life Cycle Assessment, 2021, 26, 1932-1936.	2.2	14
79	Australia's nutritional food balance: situation, outlook and policy implications. Food Security, 2017, 9, 211-226.	2.4	13
80	Value Chains and Diet Quality: A Review of Impact Pathways and Intervention Strategies. Agriculture (Switzerland), 2019, 9, 185.	1.4	13
81	Measuring integrated environmental footprint transfers in China: A new perspective on spillover-feedback effects. Journal of Cleaner Production, 2019, 241, 118375.	4.6	13
82	China's Tea Industry: Net Greenhouse Gas Emissions and Mitigation Potential. Agriculture (Switzerland), 2021, 11, 363.	1.4	12
83	Dietary strategies to reduce environmental impact must be nutritionally complete. Journal of Cleaner Production, 2017, 152, 26-27.	4.6	11
84	The water footprint and validity analysis of ecological engineering in North Beijing, China. Journal of Cleaner Production, 2018, 172, 1899-1909.	4.6	11
85	An assessment of the water use associated with Australian diets using a planetary boundary framework. Public Health Nutrition, 2021, 24, 1570-1575.	1.1	11
86	Direct and indirect land-use change as prospective climate change indicators for peri-urban development transitions. Journal of Environmental Planning and Management, 2016, 59, 643-665.	2.4	10
87	Rethinking environmental stress from the perspective of an integrated environmental footprint: Application in the Beijing industry sector. Science of the Total Environment, 2018, 637-638, 1051-1060.	3.9	10
88	No simple menu for sustainable food production and consumption. International Journal of Life Cycle Assessment, 2020, 25, 1175-1182.	2.2	10
89	An Alternative Nutrient Rich Food Index (NRF-ai) Incorporating Prevalence of Inadequate and Excessive Nutrient Intake. Foods, 2021, 10, 3156.	1.9	10
90	Suspended solids in freshwater systems: characterisation model describing potential impacts on aquatic biota. International Journal of Life Cycle Assessment, 2015, 20, 1232-1242.	2.2	9

#	Article	IF	CITATIONS
91	Identification and quantification of endogenous gibberellins in apical buds and the cambial region of Eucalyptus. Physiologia Plantarum, 1994, 90, 475-480.	2.6	9
92	An LCA impact assessment model linking land occupation and malnutrition-related DALYs. International Journal of Life Cycle Assessment, 2019, 24, 1620-1630.	2.2	8
93	Closing yield and harvest area gaps to mitigate water scarcity related to China's rice production. Agricultural Water Management, 2021, 245, 106602.	2.4	8
94	Pesticide Toxicity Footprints of Australian Dietary Choices. Nutrients, 2021, 13, 4314.	1.7	8
95	Short communication: A food-systems approach to assessing dairy product waste. Journal of Dairy Science, 2014, 97, 6107-6110.	1.4	7
96	A framework for modelling the transport and deposition of eroded particles towards water systems in a life cycle inventory. International Journal of Life Cycle Assessment, 2014, 19, 1200-1213.	2.2	7
97	Three Main Ingredients for Sustainable Diet Research. Environmental Science & Technology, 2019, 53, 2948-2949.	4.6	7
98	When Climate Metrics and Climate Stabilization Goals Do Not Align. Environmental Science & Technology, 2019, 53, 14093-14094.	4.6	7
99	A framework for assessing local PES proposals. Land Use Policy, 2015, 43, 37-41.	2.5	6
100	Mapping phosphorus hotspots in Sydney's organic wastes: a spatially explicit inventory to facilitate urban phosphorus recycling. Journal of Urban Ecology, 2018, 4, .	0.6	6
101	Diets with Higher Vegetable Intake and Lower Environmental Impact: Evidence from a Large Australian Population Health Survey. Nutrients, 2022, 14, 1517.	1.7	6
102	Radial modulus of rupture in radiata pine measured by individual rings. Journal of Wood Science, 2001, 47, 233-236.	0.9	3
103	Development and Application of a Water Footprint Metric for Agricultural Products and the Food Industry. , 2011, , 183-192.		3
104	Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios. Land, 2016, 5, 46.	1.2	3
105	Life cycle impacts of topsoil erosion on aquatic biota: case study on Eucalyptus globulus forest. International Journal of Life Cycle Assessment, 2017, 22, 159-171.	2.2	3
106	Life Cycle Assessment of Food Products. , 2019, , 488-496.		3
107	Metabolism of deuterium- and tritium-labeled gibberellins in cambial region tissues of Eucalyptus globulus stems. Tree Physiology, 1998, 18, 659-664.	1.4	2
108	Response to Fang and Heijungs. Journal of Industrial Ecology, 2014, 18, 72-72.	2.8	2

#	Article	IF	CITATIONS
109	Recommended diets in Australia are nutrient rich and have lower greenhouse gas emissions. Public Health Nutrition, 2016, 19, 3245-3245.	1.1	1
110	Food Security and Climate Stabilization: Can Cereal Production Systems Address Both?. Sustainability, 2021, 13, 1223.	1.6	1
111	Australia's dietary guidelines and the environmental impact of food "from paddock to plateâ€: Medical Journal of Australia, 2013, 199, 456-456.	0.8	1
112	The water-scarcity footprint of Australian adult diets – evidence from a large population health survey. Proceedings of the Nutrition Society, 2020, 79, .	0.4	0