
Harald Garcke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/112577/publications.pdf Version: 2024-02-01

HADALD CARCKE

#	Article	IF	CITATIONS
1	Long-time dynamics of the Cahn–Hilliard equation with kinetic rate dependent dynamic boundary conditions. Nonlinear Analysis: Theory, Methods & Applications, 2022, 215, 112619.	0.6	6
2	Stability analysis for stationary solutions of the Mullins–Sekerka flow with boundary contact. Mathematische Nachrichten, 2022, 295, 683-705.	0.4	3
3	Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations. Journal of Computational Physics, 2022, 460, 111180.	1.9	10
4	Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport. Journal of Numerical Mathematics, 2022, 30, 295-324.	1.8	5
5	A Diffuse Interface Model for Cell Blebbing Including Membrane-Cortex Coupling with Linker Dynamics. SIAM Journal on Applied Mathematics, 2022, 82, 1091-1112.	0.8	1
6	Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces. Numerische Mathematik, 2022, 151, 873-925.	0.9	7
7	Strong well-posedness, stability and optimal control theory for a mathematical model for magneto-viscoelastic fluids. Calculus of Variations and Partial Differential Equations, 2022, 61, .	0.9	4
8	On a degenerate parabolic system describing the mean curvature flow of rotationally symmetric closed surfaces. Journal of Evolution Equations, 2021, 21, 201-224.	0.6	2
9	On a phase field model of Cahn–Hilliard type for tumour growth with mechanical effects. Nonlinear Analysis: Real World Applications, 2021, 57, 103192.	0.9	25
10	Structure-preserving discretizations of gradient flows for axisymmetric two-phase biomembranes. IMA Journal of Numerical Analysis, 2021, 41, 1899-1940.	1.5	3
11	Sparse Optimal Control of a Phase Field Tumor Model with Mechanical Effects. SIAM Journal on Control and Optimization, 2021, 59, 1555-1580.	1.1	12
12	Stable approximations for axisymmetric Willmore flow for closed and open surfaces. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, 833-885.	0.8	5
13	Wie mathematische Modelle helfen, das Wachstum von Tumoren zu verstehen. Mitteilungen Der Deutschen Mathematiker-Vereinigung, 2021, 29, 62-67.	0.0	0
14	Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach. Advances in Nonlinear Analysis, 2021, 11, 159-197.	1.3	13
15	Numerical approximation of boundary value problems for curvature flow and elastic flow in Riemannian manifolds. Numerische Mathematik, 2021, 149, 375-415.	0.9	2
16	Cahn–Hilliard–Brinkman systems for tumour growth. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 3989.	0.6	9
17	Standard planar double bubbles are dynamically stable under surface diffusion flow. Communications in Analysis and Geometry, 2021, 29, 1007-1060.	0.2	1
18	Numerical approximation of curve evolutions in Riemannian manifolds. IMA Journal of Numerical Analysis, 2020, 40, 1601-1651.	1.5	4

#	Article	IF	CITATIONS
19	Long-time dynamics for a Cahn–Hilliard tumor growth model with chemotaxis. Zeitschrift Fur Angewandte Mathematik Und Physik, 2020, 71, 1.	0.7	5
20	Long time existence of solutions to an elastic flow of networks. Communications in Partial Differential Equations, 2020, 45, 1253-1305.	1.0	8
21	Weak Solutions of the CahnHilliard System with Dynamic Boundary Conditions: A Gradient Flow Approach. SIAM Journal on Mathematical Analysis, 2020, 52, 340-369.	0.9	26
22	Parametric finite element approximations of curvature-driven interface evolutions. Handbook of Numerical Analysis, 2020, 21, 275-423.	0.9	23
23	Optimal control of time-discrete two-phase flow driven by a diffuse-interface model. ESAIM - Control, Optimisation and Calculus of Variations, 2019, 25, 13.	0.7	7
24	Variational discretization of axisymmetric curvature flows. Numerische Mathematik, 2019, 141, 791-837.	0.9	14
25	Diffuse Interface Approaches in Atmosphere and Ocean—Modeling and Numerical Implementation. Mathematics of Planet Earth, 2019, , 287-307.	0.1	0
26	Surface, Bulk, and Geometric Partial Differential Equations: Interfacial, stochastic, non-local and discrete structures. Oberwolfach Reports, 2019, 16, 133-207.	0.0	0
27	Stable Discretizations of Elastic Flow in Riemannian Manifolds. SIAM Journal on Numerical Analysis, 2019, 57, 1987-2018.	1.1	5
28	On a CahnHilliard–Brinkman Model for Tumor Growth and Its Singular Limits. SIAM Journal on Mathematical Analysis, 2019, 51, 1868-1912.	0.9	24
29	Analysis of Cahnâ€Hilliardâ€Brinkman models for tumour growth. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900021.	0.2	5
30	Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis. Journal of Differential Equations, 2019, 266, 5998-6036.	1.1	46
31	Willmore flow of planar networks. Journal of Differential Equations, 2019, 266, 2019-2051.	1.1	10
32	Finite element methods for fourth order axisymmetric geometric evolution equations. Journal of Computational Physics, 2019, 376, 733-766.	1.9	19
33	Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18, 195-225.	0.4	6
34	A phase field approach to shape optimization in Navier–Stokes flow with integral state constraints. Advances in Computational Mathematics, 2018, 44, 1345-1383.	0.8	22
35	A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis. Mathematical Models and Methods in Applied Sciences, 2018, 28, 525-577.	1.7	76
36	Optimal Control of Treatment Time in a Diffuse Interface Model of Tumor Growth. Applied Mathematics and Optimization, 2018, 78, 495-544.	0.8	50

#	Article	IF	CITATIONS
37	A Hele–Shaw–Cahn–Hilliard Model for Incompressible Two-Phase Flows with Different Densities. Journal of Mathematical Fluid Mechanics, 2018, 20, 531-567.	0.4	22
38	Willmore Flow of Networks. Proceedings in Applied Mathematics and Mechanics, 2018, 18, e201800071.	0.2	1
39	CahnHilliard Inpainting with the Double Obstacle Potential. SIAM Journal on Imaging Sciences, 2018, 11, 2064-2089.	1.3	9
40	Weak Solutions and Diffuse Interface Models for IncompressibleTwo-Phase Flows. , 2018, , 1267-1327.		6
41	On a Cahn–Hilliard–Darcy System for Tumour Growth with Solution Dependent Source Terms. Springer INdAM Series, 2018, , 243-264.	0.4	18
42	Mathematical Modeling. Springer Undergraduate Mathematics Series, 2017, , .	0.1	17
43	A volume-of-fluid method for three-dimensional hexagonal solidification processes. Journal of Computational Physics, 2017, 339, 356-369.	1.9	19
44	Two-Phase Flow with Surfactants: Diffuse Interface Models and Their Analysis. Advances in Mathematical Fluid Mechanics, 2017, , 255-270.	0.1	3
45	Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities. Advances in Mathematical Fluid Mechanics, 2017, , 203-229.	0.1	4
46	Segmentation of Three-Dimensional Images with Parametric Active Surfaces and Topology Changes. Journal of Scientific Computing, 2017, 72, 1333-1367.	1.1	4
47	Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport. European Journal of Applied Mathematics, 2017, 28, 284-316.	1.4	77
48	Finite element approximation for the dynamics of fluidic two-phase biomembranes. ESAIM: Mathematical Modelling and Numerical Analysis, 2017, 51, 2319-2366.	0.8	18
49	Analysis of a CahnHilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete and Continuous Dynamical Systems, 2017, 37, 4277-4308.	0.5	52
50	Partielle Differentialgleichungen. Springer-Lehrbuch, 2017, , 309-430.	0.1	0
51	Basic Principles of Thermodynamics. Springer Undergraduate Mathematics Series, 2017, , 75-129.	0.1	0
52	Free Boundary Problems. Springer Undergraduate Mathematics Series, 2017, , 427-487.	0.1	0
53	Kontinuumsmechanik. Springer-Lehrbuch, 2017, , 199-308.	0.1	0
54	Grundzüge der Thermodynamik. Springer-Lehrbuch, 2017, , 77-131.	0.1	0

#	Article	IF	CITATIONS
55	Continuum Mechanics. Springer Undergraduate Mathematics Series, 2017, , 197-302.	0.1	Ο
56	Local wellâ€posedness for volumeâ€preserving mean curvature and Willmore flows with line tension. Mathematische Nachrichten, 2016, 289, 136-174.	0.4	5
57	A stable numerical method for the dynamics of fluidic membranes. Numerische Mathematik, 2016, 134, 783-822.	0.9	33
58	A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Mathematical Models and Methods in Applied Sciences, 2016, 26, 1095-1148.	1.7	127
59	A coupled surface-Cahn–Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes. Mathematical Models and Methods in Applied Sciences, 2016, 26, 1149-1189.	1.7	26
60	Finite element approximation for the dynamics of asymmetric fluidic biomembranes. Mathematics of Computation, 2016, 86, 1037-1069.	1.1	8
61	Optimal control of time discrete twoâ€phase flow governed by a diffuse interface model. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 785-786.	0.2	1
62	Computational Parametric Willmore Flow with Spontaneous Curvature and Area Difference Elasticity Effects. SIAM Journal on Numerical Analysis, 2016, 54, 1732-1762.	1.1	10
63	Sharp Interface Limit for a Phase Field Model in Structural Optimization. SIAM Journal on Control and Optimization, 2016, 54, 1558-1584.	1.1	24
64	Applying a phase field approach for shape optimization of a stationary Navier-Stokes flow. ESAIM - Control, Optimisation and Calculus of Variations, 2016, 22, 309-337.	0.7	6
65	Segmentation and Restoration of Images on Surfaces by Parametric Active Contours with Topology Changes. Journal of Mathematical Imaging and Vision, 2016, 55, 105-124.	0.8	12
66	Image Segmentation Using Parametric Contours With Free Endpoints. IEEE Transactions on Image Processing, 2016, 25, 1639-1648.	6.0	8
67	A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. Applied Numerical Mathematics, 2016, 99, 151-171.	1.2	45
68	Shape and Topology Optimization in Stokes Flow with a Phase Field Approach. Applied Mathematics and Optimization, 2016, 73, 23-70.	0.8	16
69	Weak Solutions and Diffuse Interface Models for Incompressible Two-Phase Flows. , 2016, , 1-60.		1
70	Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth. AIMS Mathematics, 2016, 1, 318-360.	0.7	51
71	Shape optimization for surface functionals in Navier-Stokes flow using a phase field approach. Interfaces and Free Boundaries, 2016, 18, 219-261.	0.2	13
72	On convergence of solutions to equilibria for fully nonlinear parabolic systems with nonlinear boundary conditions. Journal of Evolution Equations, 2015, 15, 913-959.	0.6	3

#	Article	IF	CITATIONS
73	Numerical computations of the dynamics of fluidic membranes and vesicles. Physical Review E, 2015, 92, 052704.	0.8	31
74	Stable finite element approximations of two-phase flow with soluble surfactant. Journal of Computational Physics, 2015, 297, 530-564.	1.9	15
75	Stability of spherical caps under the volume-preserving mean curvature flow with line tension. Nonlinear Analysis: Theory, Methods & Applications, 2015, 117, 8-37.	0.6	5
76	A Stable Parametric Finite Element Discretization of Two-Phase Navier–Stokes Flow. Journal of Scientific Computing, 2015, 63, 78-117.	1.1	28
77	Numerical Approximation of Phase Field Based Shape and Topology Optimization for Fluids. SIAM Journal of Scientific Computing, 2015, 37, A1846-A1871.	1.3	41
78	A Phase Field Approach for Shape and Topology Optimization in Stokes Flow. International Series of Numerical Mathematics, 2015, , 103-115.	1.0	3
79	Stable numerical approximation of two-phase flow with a Boussinesq–Scriven surface fluid. Communications in Mathematical Sciences, 2015, 13, 1829-1874.	0.5	9
80	Stable phase field approximations of anisotropic solidification. IMA Journal of Numerical Analysis, 2014, 34, 1289-1327.	1.5	18
81	Efficient Image Segmentation and Restoration Using Parametric Curve Evolution with Junctions and Topology Changes. SIAM Journal on Imaging Sciences, 2014, 7, 1451-1483.	1.3	17
82	Relating phase field and sharp interface approaches to structural topology optimization. ESAIM - Control, Optimisation and Calculus of Variations, 2014, 20, 1025-1058.	0.7	40
83	A Phase-Field Approach for Wetting Phenomena of Multiphase Droplets on Solid Surfaces. Langmuir, 2014, 30, 4033-4039.	1.6	60
84	Mean Curvature Flow with Triple Junctions in Higher Space Dimensions. Archive for Rational Mechanics and Analysis, 2014, 211, 301-334.	1.1	13
85	Phase Field Models Versus Parametric Front Tracking Methods: Are They Accurate and Computationally Efficient?. Communications in Computational Physics, 2014, 15, 506-555.	0.7	11
86	Multi-material Phase Field Approach to Structural Topology Optimization. International Series of Numerical Mathematics, 2014, , 231-246.	1.0	17
87	Diffuse interface modelling of soluble surfactants in two-phase flow. Communications in Mathematical Sciences, 2014, 12, 1475-1522.	0.5	42
88	Curvature Driven Interface Evolution. Deutsche Mathematiker Vereinigung Jahresbericht, 2013, 115, 63-100.	0.4	32
89	Existence of Weak Solutions for a Diffuse Interface Model for Two-Phase Flows of Incompressible Fluids with Different Densities. Journal of Mathematical Fluid Mechanics, 2013, 15, 453-480.	0.4	71
90	Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow. Computer Methods in Applied Mechanics and Engineering, 2013, 267, 511-530.	3.4	27

#	Article	IF	CITATIONS
91	On the stable discretization of strongly anisotropic phase field models with applications to crystal growth. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2013, 93, 719-732.	0.9	15
92	On an incompressible Navier–Stokes/Cahn–Hilliard system with degenerate mobility. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2013, 30, 1175-1190.	0.7	58
93	Primalâ€dual active set methods for Allen–Cahn variational inequalities with nonlocal constraints. Numerical Methods for Partial Differential Equations, 2013, 29, 999-1030.	2.0	31
94	Nonlocal Allen-Cahn systems: analysis and a primal-dual active set method. IMA Journal of Numerical Analysis, 2013, 33, 1126-1155.	1.5	16
95	Linearized stability analysis of surface diffusion for hypersurfaces with triple lines. Hokkaido Mathematical Journal, 2013, 42, .	0.2	8
96	Kepler, Kristalle und Computer. Mathematik und numerische Simulationen helfen Kristallwachstum zu verstehen. Mitteilungen Der Deutschen Mathematiker-Vereinigung, 2012, 20, 219-228.	0.0	0
97	Numerical computations of faceted pattern formation in snow crystal growth. Physical Review E, 2012, 86, 011604.	0.8	48
98	THERMODYNAMICALLY CONSISTENT, FRAME INDIFFERENT DIFFUSE INTERFACE MODELS FOR INCOMPRESSIBLE TWO-PHASE FLOWS WITH DIFFERENT DENSITIES. Mathematical Models and Methods in Applied Sciences, 2012, 22, .	1.7	305
99	ELASTIC FLOW WITH JUNCTIONS: VARIATIONAL APPROXIMATION AND APPLICATIONS TO NONLINEAR SPLINES. Mathematical Models and Methods in Applied Sciences, 2012, 22, .	1.7	13
100	Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics, 2012, , .	1.0	24
101	Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves. Numerische Mathematik, 2012, 120, 489-542.	0.9	35
102	Phase-field Approaches to Structural Topology Optimization. International Series of Numerical Mathematics, 2012, , 245-256.	1.0	35
103	Allen-Cahn and Cahn-Hilliard Variational Inequalities Solved with Optimization Techniques. International Series of Numerical Mathematics, 2012, , 21-35.	1.0	8
104	The approximation of planar curve evolutions by stable fully implicit finite element schemes that equidistribute. Numerical Methods for Partial Differential Equations, 2011, 27, 1-30.	2.0	44
105	Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method. ESAIM - Control, Optimisation and Calculus of Variations, 2011, 17, 931-954.	0.7	20
106	Thermodynamically consistent higher order phase field Navier-Stokes models with applications to biomembranes. Discrete and Continuous Dynamical Systems - Series S, 2011, 4, 371-389.	0.6	3
107	Grundzüge der Thermodynamik. Springer-Lehrbuch, 2011, , 77-131.	0.1	0
108	On stable parametric finite element methods for the Stefan problem and the Mullins–Sekerka problem with applications to dendritic growth. Journal of Computational Physics, 2010, 229, 6270-6299.	1.9	34

#	Article	IF	CITATIONS
109	An inhomogeneous, anisotropic, elastically modified GibbsÂThomson law as singular limit of a diffuse interface model. Proceedings in Applied Mathematics and Mechanics, 2010, 10, 519-520.	0.2	о
110	Motion by anisotropic mean curvature as sharp interface limit of an inhomogeneous and anisotropic Allen–Cahn equation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2010, 140, 673-706.	0.8	17
111	Numerical approximation of gradient flows for closed curves in Rd. IMA Journal of Numerical Analysis, 2010, 30, 4-60.	1.5	41
112	Finite-element approximation of coupled surface and grain boundary motion with applications to thermal grooving and sintering. European Journal of Applied Mathematics, 2010, 21, 519-556.	1.4	27
113	Parametric approximation of surface clusters driven by isotropic and anisotropic surface energies. Interfaces and Free Boundaries, 2010, 12, 187-234.	0.2	25
114	Nonlinear stability of stationary solutions for curvature flow with triple junction. Hokkaido Mathematical Journal, 2009, 38, .	0.2	6
115	Mini-Workshop: Mathematics of Biological Membranes. Oberwolfach Reports, 2009, 5, 2293-2336.	0.0	2
116	A variational formulation of anisotropic geometric evolution equations in higher dimensions. Numerische Mathematik, 2008, 109, 1-44.	0.9	40
117	On the parametric finite element approximation of evolving hypersurfaces in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si82.gif" overflow="scroll"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi </mml:mrow><mml:mrow><mml:mn>3</mml:mn><td>1.9 nml:msup></td><td>94 </td></mml:mrow></mml:msup></mml:mrow></mml:math 	1.9 nml:msup>	94
118	Journal of Computational Physics, 2008, 227, 4281-4307. Nonlinear Stability of Stationary Solutions for Surface Diffusion with Boundary Conditions. SIAM Journal on Mathematical Analysis, 2008, 40, 491-515.	0.9	6
119	Parametric Approximation of Willmore Flow and Related Geometric Evolution Equations. SIAM Journal of Scientific Computing, 2008, 31, 225-253.	1.3	80
120	Phase-field model for multiphase systems with preserved volume fractions. Physical Review E, 2008, 78, 011604.	0.8	63
121	ALLEN–CAHN SYSTEMS WITH VOLUME CONSTRAINTS. Mathematical Models and Methods in Applied Sciences, 2008, 18, 1347-1381.	1.7	48
122	On sharp interface limits of Allen–Cahn/Cahn–Hilliard variational inequalities. Discrete and Continuous Dynamical Systems - Series S, 2008, 1, 1-14.	0.6	5
123	Numerical approximation of anisotropic geometric evolution equations in the plane. IMA Journal of Numerical Analysis, 2007, 28, 292-330.	1.5	39
124	Stress- and diffusion-induced interface motion: Modelling and numerical simulations. European Journal of Applied Mathematics, 2007, 18, 631-657.	1.4	8
125	On the Variational Approximation of Combined Second and Fourth Order Geometric Evolution Equations. SIAM Journal of Scientific Computing, 2007, 29, 1006-1041.	1.3	63
126	A phase field model for the electromigration of intergranular voids. Interfaces and Free Boundaries, 2007, 9, 171-210.	0.2	23

#	Article	IF	CITATIONS
127	A parametric finite element method for fourth order geometric evolution equations. Journal of Computational Physics, 2007, 222, 441-467.	1.9	120
128	Second order phase field asymptotics for multi-component systems. Interfaces and Free Boundaries, 2006, 8, 131-157.	0.2	35
129	Surfactant Spreading on Thin Viscous Films: Nonnegative Solutions of A Coupled Degenerate System. SIAM Journal on Mathematical Analysis, 2006, 37, 2025-2048.	0.9	40
130	On Asymptotic Limits of Cahn-Hilliard Systems with Elastic Misfit. , 2006, , 87-111.		5
131	Numerical approximation of the Cahn-Larch $ ilde{A}$ © equation. Numerische Mathematik, 2005, 100, 639-662.	0.9	19
132	On a Cahn–Hilliard model for phase separation with elastic misfit. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2005, 22, 165-185.	0.7	33
133	Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid. Mathematics of Computation, 2005, 75, 7-42.	1.1	16
134	Linearized Stability Analysis of Stationary Solutions for Surface Diffusion with Boundary Conditions. SIAM Journal on Mathematical Analysis, 2005, 36, 1031-1056.	0.9	15
135	Multicomponent alloy solidification: Phase-field modeling and simulations. Physical Review E, 2005, 71, 041609.	0.8	294
136	Bi-directional diffusion induced grain boundary motion with triple junctions. Interfaces and Free Boundaries, 2004, 6, 271-294.	0.2	11
137	A Diffuse Interface Model for Alloys with Multiple Components and Phases. SIAM Journal on Applied Mathematics, 2004, 64, 775-799.	0.8	125
138	Exponential stability for a mirror–symmetric three phase boundary motion by surface diffusion. Mathematische Nachrichten, 2003, 257, 3-15.	0.4	8
139	Transient coarsening behaviour in the Cahn–Hilliard model. Acta Materialia, 2003, 51, 2823-2830.	3.8	32
140	Finite Element Approximation of Surfactant Spreading on a Thin Film. SIAM Journal on Numerical Analysis, 2003, 41, 1427-1464.	1.1	29
141	Modelling of microstructure formation and interface dynamics. Computational Materials Science, 2003, 26, 111-119.	1.4	15
142	Spinodal Decomposition in the Presence of Elastic Interactions. , 2003, , 603-635.		5
143	On Cahn—Hilliard systems with elasticity. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2003, 133, 307-331.	0.8	61
144	A Phase-field Model for the Solidification Process in Multicomponent Alloys. Lecture Notes in Computational Science and Engineering, 2003, , 142-149.	0.1	1

#	Article	IF	CITATIONS
145	A phase field model for continuous clustering on vector fields. IEEE Transactions on Visualization and Computer Graphics, 2001, 7, 230-241.	2.9	30
146	The Cahn-Hilliard equation with elasticity-finite element approximation and qualitative studies. Interfaces and Free Boundaries, 2001, 3, 101-118.	0.2	36
147	On fully practical finite element approximations of degenerate Cahn-Hilliard systems. ESAIM: Mathematical Modelling and Numerical Analysis, 2001, 35, 713-748.	0.8	57
148	Phase Boundaries in Alloys with Elastic Misfit. , 2001, , 281-289.		0
149	A continuous clustering method for vector fields. , 2000, , .		12
150	A MATHEMATICAL MODEL FOR GRAIN GROWTH IN THIN METALLIC FILMS. Mathematical Models and Methods in Applied Sciences, 2000, 10, 895-921.	1.7	20
151	Anisotropy in multi-phase systems: a phase field approach. Interfaces and Free Boundaries, 1999, 1, 175-198.	0.2	34
152	A MultiPhase Field Concept: Numerical Simulations of Moving Phase Boundaries and Multiple Junctions. SIAM Journal on Applied Mathematics, 1999, 60, 295-315.	0.8	186
153	Finite Element Approximation of the CahnHilliard Equation with Degenerate Mobility. SIAM Journal on Numerical Analysis, 1999, 37, 286-318.	1.1	178
154	On a Fourth-Order Degenerate Parabolic Equation: Global Entropy Estimates, Existence, and Qualitative Behavior of Solutions. SIAM Journal on Mathematical Analysis, 1998, 29, 321-342.	0.9	158
155	Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numerische Mathematik, 1998, 80, 525-556.	0.9	65
156	On anisotropic order parameter models for multi-phase systems and their sharp interface limits. Physica D: Nonlinear Phenomena, 1998, 115, 87-108.	1.3	125
157	A multi-phase Mullins–Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1998, 128, 481-506.	0.8	34
158	Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix. Physica D: Nonlinear Phenomena, 1997, 109, 242-256.	1.3	65
159	On the Cahn–Hilliard Equation with Degenerate Mobility. SIAM Journal on Mathematical Analysis, 1996, 27, 404-423.	0.9	368
160	Traveling Wave Solutions as Dynamic Phase Transitions in Shape Memory Alloys. Journal of Differential Equations, 1995, 121, 203-231.	1.1	12
161	On the stable numerical approximation of two-phase flow with insoluble surfactant. ESAIM: Mathematical Modelling and Numerical Analysis, 0, , .	0.8	4
162	Stable variational approximations of boundary value problems for Willmore flow with Gaussian curvature. IMA Journal of Numerical Analysis, 0, , .	1.5	0

#	Article	IF	CITATIONS
163	Gradient flow dynamics of two-phase biomembranes: Sharp interface variational formulation and finite element approximation. SMAI Journal of Computational Mathematics, 0, 4, 151-195.	0.0	7

164 Stability analysis of phase boundary motion by surface diffusion with triple junction. , 0, , .