Gregory G Knapik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11257258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A physiological and biomechanical investigation of three passive upper-extremity exoskeletons during simulated overhead work. Ergonomics, 2022, 65, 105-117.	2.1	13
2	Biomechanical musculoskeletal models of the cervical spine: A systematic literature review. Clinical Biomechanics, 2020, 71, 115-124.	1.2	22
3	An electromyography-assisted biomechanical cervical spine model: Model development and validation. Clinical Biomechanics, 2020, 80, 105169.	1.2	7
4	One versus two-handed lifting and lowering: lumbar spine loads and recommended one-handed limits protecting the lower back. Ergonomics, 2020, 63, 505-521.	2.1	7
5	Spinal Loading During One and Two-Handed Lifting. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 1126-1127.	0.3	0
6	Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine. Applied Ergonomics, 2019, 75, 1-7.	3.1	49
7	BiomechanicallyÂdetermined hand force limits protecting the low back during occupational pushing and pulling tasks. Ergonomics, 2018, 61, 853-865.	2.1	20
8	Biomechanical evaluation of exoskeleton use on loading of the lumbar spine. Applied Ergonomics, 2018, 68, 101-108.	3.1	92
9	Application of MR-derived cross-sectional guideline of cervical spine muscles to validate neck surface electromyography placement. Journal of Electromyography and Kinesiology, 2018, 43, 127-139.	1.7	6
10	Curved muscles in biomechanical models of the spine: a systematic literature review. Ergonomics, 2017, 60, 577-588.	2.1	14
11	Validation of a personalized curved muscle model of the lumbar spine during complex dynamic exertions. Journal of Electromyography and Kinesiology, 2017, 33, 1-9.	1.7	9
12	Development and testing of a moment-based coactivation index to assess complex dynamic tasks for the lumbar spine. Clinical Biomechanics, 2017, 46, 23-32.	1.2	15
13	Biomechanically-Determined Guidelines for Occupational Pushing and Pulling. Proceedings of the Human Factors and Ergonomics Society, 2017, 61, 914-915.	0.3	0
14	A biologically-assisted curved muscle model of the lumbar spine: Model validation. Clinical Biomechanics, 2016, 37, 153-159.	1.2	22
15	Prediction of magnetic resonance imaging-derived trunk muscle geometry with application to spine biomechanical modeling. Clinical Biomechanics, 2016, 37, 60-64.	1.2	11
16	A biologically-assisted curved muscle model of the lumbar spine: Model structure. Clinical Biomechanics, 2016, 37, 53-59.	1.2	29
17	An EMG-assisted model calibration technique that does not require MVCs. Journal of Electromyography and Kinesiology, 2013, 23, 608-613.	1.7	43
18	Use of a personalized hybrid biomechanical model to assess change in lumbar spine function with a TDR compared to an intact spine, European Spine Journal, 2012, 21, 641-652	2.2	11

#	Article	IF	CITATIONS
19	Musculoskeletal disorder risk during automotive assembly: current vs. seated. Applied Ergonomics, 2012, 43, 671-678.	3.1	24
20	Musculoskeletal disorder risk as a function of vehicle rotation angle during assembly tasks. Applied Ergonomics, 2011, 42, 699-709.	3.1	22
21	Spine loading at different lumbar levels during pushing and pulling. Ergonomics, 2009, 52, 60-70.	2.1	80
22	Loading along the lumbar spine as influence by speed, control, load magnitude, and handle height during pushing. Clinical Biomechanics, 2009, 24, 155-163.	1.2	51