
Timothy P Yoshino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11257238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nature Communications, 2017, 8, 15451.	12.8	216
2	Using RNA interference to manipulate endogenous gene expression in Schistosoma mansoni sporocysts. Molecular and Biochemical Parasitology, 2003, 128, 205-215.	1.1	154
3	Production of Schistosoma mansoni Daughter Sporocysts from Mother Sporocysts Maintained in Synxenic Culture with Biomphalaria glabrata Embryonic (BGE) Cells. Journal of Parasitology, 1995, 81, 714.	0.7	127
4	Anti-schistosomal Intervention Targets Identified by Lifecycle Transcriptomic Analyses. PLoS Neglected Tropical Diseases, 2009, 3, e543.	3.0	116
5	Proteomic analysis of Schistosoma mansoni proteins released during in vitro miracidium-to-sporocyst transformation. Molecular and Biochemical Parasitology, 2009, 164, 32-44.	1.1	94
6	Community diversity reduces <i>Schistosoma mansoni</i> transmission, host pathology and human infection risk. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1657-1663.	2.6	81
7	Phenotypic Screen of Early-Developing Larvae of the Blood Fluke, Schistosoma mansoni, using RNA Interference. PLoS Neglected Tropical Diseases, 2009, 3, e502.	3.0	75
8	Schistosoma mansoni: Effect of infection on reproduction and gonadal growth in Biomphalaria glabrata. Experimental Parasitology, 1989, 68, 326-334.	1.2	74
9	Molecular and functional characterization of a tandem-repeat galectin from the freshwater snail Biomphalaria glabrata, intermediate host of the human blood fluke Schistosoma mansoni. Gene, 2008, 411, 46-58.	2.2	71
10	Cellular Receptors and Signal Transduction in Molluscan Hemocytes: Connections with the Innate Immune System of Vertebrates. Integrative and Comparative Biology, 2003, 43, 305-312.	2.0	68
11	Schistosoma mansoni: Passive transfer of resistance by serum in the vector snail, Biomphalaria glabrata. Experimental Parasitology, 1984, 58, 188-193.	1.2	66
12	In vitro Effect of Larval Schistosoma mansoni Excretory-Secretory Products on Phagocytosis-Stimulated Superoxide Production in Hemocytes from Biomphalaria glabrata. Journal of Parasitology, 1990, 76, 895.	0.7	64
13	Lysozymelike activity in the hemolymph of Biomphalaria glabrata challenged with bacteria. Journal of Invertebrate Pathology, 1977, 29, 170-174.	3.2	63
14	Potential role of a CD36-like class B scavenger receptor in the binding of modified low-density lipoprotein (acLDL) to the tegumental surface of Schistosoma mansoni sporocysts. Molecular and Biochemical Parasitology, 2006, 146, 219-230.	1.1	63
15	Role of the Endogenous Antioxidant System in the Protection of Schistosoma mansoni Primary Sporocysts against Exogenous Oxidative Stress. PLoS Neglected Tropical Diseases, 2009, 3, e550.	3.0	62
16	Integrin-like RGD-dependent binding mechanism involved in the spreading response of circulating molluscan phagocytes. Developmental and Comparative Immunology, 1998, 22, 39-53.	2.3	61
17	Glycotope analysis in miracidia and primary sporocysts of Schistosoma mansoni: Differential expression during the miracidium-to-sporocyst transformation. International Journal for Parasitology, 2009, 39, 1331-1344.	3.1	61
18	Separation of oyster hemocytes by density gradient centrifugation and identification of their surface receptors. Journal of Invertebrate Pathology, 1980, 36, 35-40.	3.2	59

Тімотну Р Уозніно

#	Article	IF	CITATIONS
19	Comparison of concanavalin a-reactive determinants on hemocytes of two Biomphalaria glabrata snail stocks: receptor binding and redistribution. Developmental and Comparative Immunology, 1981, 5, 229-240.	2.3	59
20	Flukes without Snails: Advances in the in Vitro Cultivation of Intramolluscan Stages of Trematodes. Experimental Parasitology, 2000, 94, 62-66.	1.2	59
21	Regulation of hydrogen peroxide release in circulating hemocytes of the planorbid snail Biomphalaria glabrata. Developmental and Comparative Immunology, 2008, 32, 554-562.	2.3	59
22	Determinants of Compatibility in Mollusc-Trematode Parasitism. American Zoologist, 1989, 29, 399-407.	0.7	57
23	Profiling Schistosoma mansoni development using serial analysis of gene expression (SAGE). Experimental Parasitology, 2007, 117, 246-258.	1.2	57
24	Cloning of a \hat{I}^2 integrin subunit cDNA from an embryonic cell line derived from the freshwater mollusc, Biomphalaria glabrata. Gene, 1999, 228, 213-223.	2.2	55
25	DIFFERENTIAL EXPRESSION OF LacdiNAc, FUCOSYLATED LacdiNAc, AND LEWIS X GLYCAN ANTIGENS IN INTRAMOLLUSCAN STAGES OF SCHISTOSOMA MANSONI. Journal of Parasitology, 2002, 88, 890-897.	0.7	53
26	Proteinase Activity in Miracidia, Transformation Excretory-Secretory Products, and Primary Sporocysts of Schistosoma mansoni. Journal of Parasitology, 1993, 79, 23.	0.7	52
27	Lectin and Human Blood Group Determinants of Schistosoma mansoni: Alteration Following In vitro Transformation of Miracidium to Mother Sporocyst. Journal of Parasitology, 1977, 63, 818.	0.7	49
28	Characterization of Excretory-Secretory Proteins Synthesized In vitro by Schistosoma mansoni Primary Sporocysts. Journal of Parasitology, 1989, 75, 853.	0.7	49
29	Biogenic monoamines in the freshwater snail, Biomphalaria glabrata: Influence of infection by the human blood fluke, Schistosoma mansoni. Comparative Biochemistry and Physiology A, Comparative Physiology, 1996, 114, 227-234.	0.6	47
30	Schistosoma mansoni: DNA microarray gene expression profiling during the miracidium-to-mother sporocyst transformation. Molecular and Biochemical Parasitology, 2006, 147, 39-47.	1.1	46
31	Proteomic analysis of Biomphalaria glabrata plasma proteins with binding affinity to those expressed by early developing larval Schistosoma mansoni. PLoS Pathogens, 2017, 13, e1006081.	4.7	46
32	Identification of a Schistosoma mansoni sporocyst excretory-secretory antioxidant molecule and its effect on superoxide production by Biomphalaria glabrata hemocytes. Journal of Invertebrate Pathology, 1991, 58, 387-395.	3.2	45
33	Will All Scientists Working on Snails and the Diseases They Transmit Please Stand Up?. PLoS Neglected Tropical Diseases, 2012, 6, e1835.	3.0	45
34	Identification of antigenically distinct hemocyte subpopulations in Biomphalaria glabrata (Gastropoda) using monoclonal antibodies to surface membrane markers. Cell and Tissue Research, 1983, 232, 553-564.	2.9	44
35	Lysosomal Enzyme Activities in Susceptible and Refractory Strains of Biomphalaria glabrata during the Course of Infection with Schistosoma mansoni. Journal of Parasitology, 1983, 69, 1018.	0.7	44
36	Schistosoma mansoni: Effects of Serotonin and Serotonin Receptor Antagonists on Motility and Length of Primary Sporocysts in Vitro. Experimental Parasitology, 2000, 94, 217-226.	1.2	44

Тімотну Р Уозніно

#	Article	IF	CITATIONS
37	Larval Schistosoma Mansoni Excretory–Secretory Glycoproteins (ESPs) Bind to Hemocytes of Biomphalaria Glabrata (GASTROPODA) Via Surface Carbohydrate Binding Receptors. Journal of Parasitology, 2001, 87, 786-793.	0.7	42
38	Characterization of molluscan phagocyte subpopulations based on lysosomal enzyme markers. The Journal of Experimental Zoology, 1983, 226, 205-210.	1.4	41
39	Isolation and functional characterization of snail hemocyte-modulating polypeptide from primary sporocysts ofSchistosoma mansoni. Molecular and Biochemical Parasitology, 1991, 49, 1-10.	1.1	41
40	Schistosoma mansoni excretory–secretory products stimulate a p38 signalling pathway in Biomphalaria glabrata embryonic cells. International Journal for Parasitology, 2006, 36, 37-46.	3.1	41
41	Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates. Experimental Parasitology, 2013, 133, 28-36.	1.2	41
42	Gene manipulation in parasitic helminths. International Journal for Parasitology, 2003, 33, 1259-1268.	3.1	40
43	Surface antigens of Biomphalaria glabrata (Gastropoda) hemocytes: Functional heterogeneity in cell subpopulations recognized by a monoclonal antibody. Journal of Invertebrate Pathology, 1985, 45, 174-186.	3.2	39
44	The Biomphalaria glabrata DNA methylation machinery displays spatial tissue expression, is differentially active in distinct snail populations and is modulated by interactions with Schistosoma mansoni. PLoS Neglected Tropical Diseases, 2017, 11, e0005246.	3.0	39
45	The identification of inhibitors of Schistosoma mansoni miracidial transformation by incorporating a medium-throughput small-molecule screen. Experimental Parasitology, 2010, 125, 84-94.	1.2	38
46	Secretory Protein Biosynthesis in Snail Hemocytes: In vitro Modulation by Larval Schistosome Excretory-Secretory Products. Journal of Parasitology, 1988, 74, 538.	0.7	36
47	Excreted/secreted Schistosoma mansoni venom allergen-like 9 (SmVAL9) modulates host extracellular matrix remodelling gene expression. International Journal for Parasitology, 2014, 44, 551-563.	3.1	36
48	Experimentally induced elevation of aminopeptidase activity in hemolymph cells of the American oyster, Crassostrea virginica. Journal of Invertebrate Pathology, 1976, 27, 367-370.	3.2	34
49	Isolation and Characterization of Phenoloxidase from Egg Masses of the Gastropod Mollusc, Biomphalaria glabrata. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 118, 463-469.	1.6	34
50	Heat-Shock Response in a Molluscan Cell Line: Characterization of the Response and Cloning of an Inducible HSP70 cDNA. Journal of Invertebrate Pathology, 1997, 70, 226-233.	3.2	33
51	Proteomic Analysis of Biomphalaria glabrata Hemocytes During in vitro Encapsulation of Schistosoma mansoni Sporocysts. Frontiers in Immunology, 2018, 9, 2773.	4.8	33
52	Developmental expression analysis and immunolocalization of a biogenic amine receptor in Schistosoma mansoni. Experimental Parasitology, 2009, 122, 17-27.	1.2	32
53	Cloning and Functional Characterization of Two Calmodulin Genes During Larval Development in the Parasitic Flatworm Schistosoma mansoni. Journal of Parasitology, 2011, 97, 72-81.	0.7	32
54	Binding and redistribution of surface membrane receptors for concanavalin A on oyster hemocytes. The Journal of Experimental Zoology, 1979, 207, 439-450.	1.4	31

Тімотну Р Уозніно

#	Article	IF	CITATIONS
55	Glycotope Sharing between Snail Hemolymph and Larval Schistosomes: Larval Transformation Products Alter Shared Glycan Patterns of Plasma Proteins. PLoS Neglected Tropical Diseases, 2012, 6, e1569.	3.0	29
56	Lipase activity in the hemolymph of Biomphalaria glabrata (Mollusca) challenged with bacterial lipids. Journal of Invertebrate Pathology, 1976, 28, 143-146.	3.2	28
57	Lipase activity in the serum and hemolymph cells of the soft-shelled clam, Mya arenaria, during phagocytosis. Journal of Invertebrate Pathology, 1976, 27, 243-245.	3.2	27
58	Protein kinase C regulation of cell spreading in the molluscan Biomphalaria glabrata embryonic (Bge) cell line. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1540, 243-252.	4.1	27
59	SEROTONIN-INDUCED MUSCULAR ACTIVITY IN SCHISTOSOMA MANSONI LARVAL STAGES: IMPORTANCE OF 5-HT TRANSPORT AND ROLE IN DAUGHTER SPOROCYST PRODUCTION. Journal of Parasitology, 2005, 91, 542-550.	0.7	27
60	Schistosoma mansoni: Relationship between cercarial production levels and snail host susceptibility. Experimental Parasitology, 1988, 66, 78-85.	1.2	26
61	Immunorecognition in the freshwater bivalve, Corbicula fluminea II. Isolation and characterization of a plasma opsonin with hemagglutinating activity. Developmental and Comparative Immunology, 1990, 14, 397-404.	2.3	25
62	Monoamines and their metabolites in the freshwater snail Biomphalaria glabrata. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2000, 125, 469-478.	1.8	24
63	Gene drives for schistosomiasis transmission control. PLoS Neglected Tropical Diseases, 2019, 13, e0007833.	3.0	23
64	Schistosoma mansoni: Origin and expression of a tegumental surface antigen on the miracidium and primary sporocyst. Experimental Parasitology, 1988, 67, 167-181.	1.2	22
65	Soluble mediators of cytolytic activity in hemocytes of the asian clam, Corbicula fluminea. Developmental and Comparative Immunology, 1985, 9, 515-522.	2.3	21
66	SURFACE MEMBRANE PROTEINS OF BIOMPHALARIA GLABRATA EMBRYONIC CELLS BIND FUCOSYL DETERMINANTS ON THE TEGUMENTAL SURFACE OF SCHISTOSOMA MANSONI PRIMARY SPOROCYSTS. Journal of Parasitology, 2007, 93, 832-840.	0.7	20
67	Differential gene expression and the effects of Biomphalaria glabrata embryonic (Bge) cell factors during larval Schistosoma mansoni development. Molecular and Biochemical Parasitology, 2004, 135, 153-157.	1.1	19
68	The Ultrastructure of Circulating Hemolymph Cells of the Marine Snail <i>Cerithidea californica</i> (Gastropoda: Prosobranchiata). Journal of Morphology, 1976, 150, 485-493.	1.2	18
69	Analysis of Tegumental Surface Proteins of Schistosoma mansoni Primary Sporocysts. Journal of Parasitology, 1987, 73, 778.	0.7	18
70	Surface Membrane Polypeptides Associated with Hemocytes from Schistosoma mansoni-Susceptible and -Resistant Strains of Biomphalaria glabrata (Gastropoda). Journal of Invertebrate Pathology, 1994, 63, 82-89.	3.2	17
71	<i>In vitro</i> manipulation of gene expression in larval <i>Schistosoma</i> : a model for postgenomic approaches in Trematoda. Parasitology, 2010, 137, 463-483.	1.5	17
72	Lectins and antibodies as molecular probes of molluscan hemocyte surface membranes. Developmental and Comparative Immunology, 1983, 7, 641-644.	2.3	16

Тімотну Р Үозніно

#	Article	IF	CITATIONS
73	Lectin-Induced Modulation Of Snail Hemocyte Surface Determinants: Clearance Of Con A-Receptor Complexes. Developmental and Comparative Immunology, 1982, 6, 451-461.	2.3	15
74	Surface antigens of Biomphalaria glabrata (Castropoda) hemocytes: Occurrence of membrane-associated hemolymph-like factors antigenically related to snail hemoglobin. Journal of Invertebrate Pathology, 1983, 41, 310-320.	3.2	15
75	Role of divalent cations in plasma opsonin-dependent and-independent erythrophagocytosis by hemocytes of the Asian clam, Corbicula fluminea. Journal of Invertebrate Pathology, 1987, 50, 310-319.	3.2	15
76	Monoamines in the albumen gland, plasma, and central nervous system of the snail Biomphalaria glabrata during egg-laying. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 132, 411-422.	1.8	15
77	Aminopeptidase activity in the hemolymph and body tissues of the pulmonate gastropod Biomphalaria glabrata. Journal of Invertebrate Pathology, 1977, 30, 76-79.	3.2	14
78	Immunorecognition in the freshwater bivalve, Corbicula fluminea I. Electrophortic and immunologic analyses of opsonic plasma components. Developmental and Comparative Immunology, 1990, 14, 385-395.	2.3	14
79	Schistosoma mansoni: Influence of infection on levels of translatable mRNA and on polypeptide synthesis in the ovotestis and albumen gland of Biomphalaria glabrata. Experimental Parasitology, 1991, 72, 368-380.	1.2	13
80	Concanavalin A-induced receptor redistribution on Biomphalaria glabrata hemocytes: Characterization of capping and patching responses. Journal of Invertebrate Pathology, 1981, 38, 102-112.	3.2	11
81	Tegumental surface modulation in Schistosoma mansoni primary sporocysts in response to ligand binding. Parasite Immunology, 1991, 13, 121-135.	1.5	10
82	The knockdown of each component of the cysteine proteinase-adhesin complex of <i>Entamoeba histolytica</i> (EhCPADH) affects the expression of the other complex element as well as the <i>in vitro</i> and <i>in vivo</i> virulence. Parasitology, 2016, 143, 50-59.	1.5	10
83	Histopathological effects of larval digenea on the digestive epithelia of the marine prosobranch Cerithidea californica: Fine structural changes in the digestive gland. Journal of Invertebrate Pathology, 1976, 28, 209-216.	3.2	9
84	Immunobiology of Biomphalaria–Trematode Interactions. , 2011, , 159-189.		9
85	Sequence and structural variation in the genome of the Biomphalaria glabrata embryonic (Bge) cell line. Parasites and Vectors, 2018, 11, 496.	2.5	9
86	Biomphalaria glabrata (Gastropoda): Effect of urethane on the morphology and function of hemocytes, and on susceptibility to Schistosoma mansoni (Trematoda). Journal of Invertebrate Pathology, 1985, 45, 324-330.	3.2	8
87	Mass Isolation and In Vitro Cultivation of Intramolluscan Stages of the Human Blood Fluke Schistosoma Mansoni . Journal of Visualized Experiments, 2018, , .	0.3	8
88	In Silico Analysis of the Fucosylation-Associated Genome of the Human Blood Fluke Schistosoma mansoni: Cloning and Characterization of the Fucosyltransferase Multigene Family. PLoS ONE, 2013, 8, e63299.	2.5	8
89	Surface antigens of Biomphalaria glabrata (Gastropoda) hemocytes: Evidence for linkage-independence of some hemoiymph-like surface antigens and Con a receptor-bearing macromolecules. Journal of Invertebrate Pathology, 1983, 42, 8-16.	3.2	7

90 In Vitro Effects of Mucus from the Mantle of Compatible (Lymnaea elodes) and Incompatible (Helisoma) Tj ETQq0 0.0 rgBT /Qverlock 10

Тімотну Р Үознійо

#	Article	IF	CITATIONS
91	ELISA based on a recombinant Paragonimus heterotremus protein for serodiagnosis of human paragonimiasis in Thailand. Parasites and Vectors, 2018, 11, 322.	2.5	7
92	In silico analysis of the fucosylation-associated genome of the human blood fluke Schistosoma mansoni: cloning and characterization of the enzymes involved in GDP-L-fucose synthesis and Golgi import. Parasites and Vectors, 2013, 6, 201.	2.5	6
93	Intracellular Distribution of Lysosomal Enzymes within the Hemocytes of Biomphalaria glabrata. Transactions of the American Microscopical Society, 1984, 103, 38.	0.3	5
94	Phospholipase C-like activity in phagocytic cells of the asian clam, Corbicula fluminea, and its possible role in cell-mediated cytolytic reactions. Journal of Invertebrate Pathology, 1988, 51, 32-40.	3.2	5
95	Larval Schistosoma mansoni Excretory-Secretory Glycoproteins (ESPs) Bind to Hemocytes of Biomphalaria glabrata (Gastropoda) via Surface Carbohydrate Binding Receptors. Journal of Parasitology, 2001, 87, 786.	0.7	5
96	H+ channels in embryonic Biomphalaria glabrata cell membranes: Putative roles in snail host-schistosome interactions. PLoS Neglected Tropical Diseases, 2017, 11, e0005467.	3.0	5
97	Application of recombinant SMR-domain containing protein of angiostrongylus cantonensis in immunoblot diagnosis of human angiostrongyliasis. Southeast Asian Journal of Tropical Medicine and Public Health, 2010, 41, 785-99.	1.0	5
98	Molecular and functional characterization of a putative PA28Î ³ proteasome activator orthologue in Schistosoma mansoni. Molecular and Biochemical Parasitology, 2013, 189, 14-25.	1.1	3
99	Cloning and expression of a 16-kDa recombinant protein from Angiostrongylus cantonensis for use in immunoblot diagnosis of human angiostrongyliasis. Parasitology Research, 2016, 115, 4115-4122.	1.6	3
100	Histopathological effects of larval digenea on the digestive epithelia of the marine prosbranch Cerithidea californica: Fine structural changes in the intestine. Journal of Invertebrate Pathology, 1976, 28, 309-313.	3.2	1