Attila Lehotzky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/112563/publications.pdf

Version: 2024-02-01

471371 501076 1,372 29 17 28 citations h-index g-index papers 29 29 29 1555 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Challenges in Discovering Drugs That Target the Protein–Protein Interactions of Disordered Proteins. International Journal of Molecular Sciences, 2022, 23, 1550.	1.8	16
2	Co-Transmission of Alpha-Synuclein and TPPP/p25 Inhibits Their Proteolytic Degradation in Human Cell Models. Frontiers in Molecular Biosciences, 2021, 8, 666026.	1.6	9
3	Anti-Aggregative Effect of the Antioxidant DJ-1 on the TPPP/p25-Derived Pathological Associations of Alpha-Synuclein. Cells, 2021, 10, 2909.	1.8	1
4	HaloTagâ€Targeted Sirtuinâ€Rearranging Ligand (SirReal) for the Development of Proteolysisâ€Targeting Chimeras (PROTACs) against the Lysine Deacetylase Sirtuin 2 (Sirt2)**. ChemBioChem, 2020, 21, 3371-3376.	1.3	13
5	Microtubule-Associated Proteins with Regulatory Functions by Day and Pathological Potency at Night. Cells, 2020, 9, 357.	1.8	23
6	Interactions between two regulatory proteins of microtubule dynamics, HDAC6, TPPP/p25, and the hub protein, DYNLL/LC8. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118556.	1.9	4
7	New chemical tools for probing activity and inhibition of the NAD ⁺ -dependent lysine deacylase sirtuin 2. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170083.	1.8	21
8	Chemically Induced Degradation of Sirtuin 2 (Sirt2) by a Proteolysis Targeting Chimera (PROTAC) Based on Sirtuin Rearranging Ligands (SirReals). Journal of Medicinal Chemistry, 2018, 61, 482-491.	2.9	204
9	Challenging drug target for Parkinson's disease: Pathological complex of the chameleon TPPP/p25 and alpha-synuclein proteins. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 310-323.	1.8	23
10	Modulation Of Microtubule Acetylation By The Interplay Of TPPP/p25, SIRT2 And New Anticancer Agents With Anti-SIRT2 Potency. Scientific Reports, 2017, 7, 17070.	1.6	17
11	Structureâ€Based Development of an Affinity Probe for Sirtuinâ€2. Angewandte Chemie - International Edition, 2016, 55, 2252-2256.	7.2	50
12	Aminothiazoles as Potent and Selective Sirt2 Inhibitors: A Structure–Activity Relationship Study. Journal of Medicinal Chemistry, 2016, 59, 1599-1612.	2.9	76
13	Cross metathesis with hydroxamate and benzamide BOC-protected alkenes to access HDAC inhibitors and their biological evaluation highlighted intrinsic activity of BOC-protected dihydroxamates. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 154-159.	1.0	11
14	Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nature Communications, 2015, 6, 6263.	5.8	222
15	Zinc-induced structural changes of the disordered tppp/p25 inhibits its degradation by the proteasome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 83-91.	1.8	9
16	Identification of motives mediating alternative functions of the neomorphic moonlighting TPPP/p25. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 547-557.	1.8	25
17	Tubulin polymerizationâ€promoting protein (TPPP/p25) is critical for oligodendrocyte differentiation. Glia, 2010, 58, 157-168.	2.5	116
18	TPPP/p25 Promotes Tubulin Acetylation by Inhibiting Histone Deacetylase 6. Journal of Biological Chemistry, 2010, 285, 17896-17906.	1.6	91

Attila Lehotzky

#	Article	IF	CITATIONS
19	TPPP/p25: A New Unstructured Protein Hallmarking Synucleinopathies. Focus on Structural Biology, 2009, , 225-250.	0.1	5
20	The brain-specific protein TPPP/p25 in pathological protein deposits of neurodegenerative diseases. Acta Neuropathologica, 2007, 113, 153-161.	3.9	65
21	TPPP/p25 in brain tumours: expression in non-neoplastic oligodendrocytes but not in oligodendroglioma cells. Acta Neuropathologica, 2007, 113, 213-215.	3.9	28
22	Tubulin Polymerization Promoting Proteins (TPPPs): Members of a New Family with Distinct Structures and Functionsâ€. Biochemistry, 2006, 45, 13818-13826.	1.2	83
23	Interaction of TPPP/p25 protein with glyceraldehyde-3-phosphate dehydrogenase and their co-localization in Lewy bodies. FEBS Letters, 2006, 580, 5807-5814.	1.3	34
24	What is the biological significance of the brain-specific tubulin-polymerization promoting protein (TPPP/p25)?. IUBMB Life, 2005, 57, 765-768.	1.5	7
25	Natively unfolded tubulin polymerization promoting protein TPPP/p25 is a common marker of alpha-synucleinopathies. Neurobiology of Disease, 2004, 17, 155-162.	2.1	140
26	Effect of transforming growth factor \hat{l}^21 on microglial MHC-class II expression. Journal of Neuroimmunology, 2000, 103, 122-130.	1.1	13
27	Pyruvate Kinase as a Microtubule Destabilizing Factorin Vitro. Biochemical and Biophysical Research Communications, 1999, 254, 430-435.	1.0	30
28	Characterization of Microtubuleâ^'Phosphofructokinase Complex: Specific Effects of MgATP and Vinblastineâ€. Biochemistry, 1997, 36, 2051-2062.	1,2	33
29	A Potential Innovative Therapy for Parkinson's Disease: Selective Destruction of the Pathological Assemblies of Alpha-Synuclein 0		3