
Sufal Swaraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1125517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highlighting the processing versatility of a silicon phthalocyanine derivative for organic thin-film transistors. Journal of Materials Chemistry C, 2022, 10, 485-495.	5.5	16
2	Ptychography at the carbon K-edge. Communications Materials, 2022, 3, .	6.9	18
3	Soft X-ray characterization of halide perovskite film by scanning transmission X-ray microscopy. Scientific Reports, 2022, 12, 4520.	3.3	6
4	Correlating Morphology, Molecular Orientation, and Transistor Performance of Bis(pentafluorophenoxy)silicon Phthalocyanine Using Scanning Transmission X-ray Microscopy. Chemistry of Materials, 2022, 34, 4496-4504.	6.7	4
5	Silicon Phthalocyanines for n-Type Organic Thin-Film Transistors: Development of Structure–Property Relationships. ACS Applied Electronic Materials, 2021, 3, 325-336.	4.3	27
6	Intracellular amorphous Ca-carbonate and magnetite biomineralization by a magnetotactic bacterium affiliated to the Alphaproteobacteria. ISME Journal, 2021, 15, 1-18.	9.8	52
7	Synthetically facile organic solar cells with >4% efficiency using P3HT and a silicon phthalocyanine non-fullerene acceptor. Materials Advances, 2021, 2, 2594-2599.	5.4	18
8	Analysis of Cr(VI) Bioremediation by Citrobacter freundii Using Synchrotron Soft X-ray Scanning Transmission X-ray Microscopy. Quantum Beam Science, 2021, 5, 28.	1.2	1
9	Lignans in Knotwood of Norway Spruce: Localisation with Soft X-ray Microscopy and Scanning Transmission Electron Microscopy with Energy Dispersive X-ray Spectroscopy. Molecules, 2020, 25, 2997.	3.8	7
10	A pressure-actuated flow cell for soft X-ray spectromicroscopy in liquid media. Lab on A Chip, 2020, 20, 3213-3229.	6.0	8
11	Backside-illuminated scientific CMOS detector for soft X-ray resonant scattering and ptychography. Journal of Synchrotron Radiation, 2020, 27, 1577-1589.	2.4	23
12	Soft x-ray microscopy with 7 nm resolution. Optica, 2020, 7, 1602.	9.3	31
13	Magnetite magnetosome biomineralization in Magnetospirillum magneticum strain AMB-1: A time course study. Chemical Geology, 2019, 530, 119348.	3.3	22
14	Exploiting atomic layer deposition for fabricating sub-10 nm X-ray lenses. Microelectronic Engineering, 2018, 191, 91-96.	2.4	21
15	X-ray microscopic investigation of molecular orientation in a hole carrier thin film for organic solar cells. Nano Research, 2018, 11, 2771-2782.	10.4	20
16	How do Magnetotactic Bacteria Synthesize Magnetite? - a Soft X-ray Spectroscopy, Spectromicroscopy and Magnetism Time Course Study. Microscopy and Microanalysis, 2018, 24, 378-379.	0.4	1
17	7 nm Spatial Resolution in Soft X-ray Microscopy. Microscopy and Microanalysis, 2018, 24, 272-273.	0.4	29
18	STXM Chemical Mapping of Norway Spruce Knotwood Lignans. Microscopy and Microanalysis, 2018, 24, 482-483.	0.4	2

SUFAL SWARAJ

#	Article	IF	CITATIONS
19	Face-on orientation of fluorinated polymers conveyed by long alkyl chains: a prerequisite for high photovoltaic performances. Journal of Materials Chemistry A, 2018, 6, 12038-12045.	10.3	32
20	Shell thickness determination for PTFEâ€PS coreâ€shell nanoparticles using scanning transmission Xâ€ray microscopy (STXM). Surface and Interface Analysis, 2018, 50, 1077-1082.	1.8	8
21	Simultaneous surface and bulk sensitive XAS measurements of magnetic particle clusters. Journal of Physics: Conference Series, 2017, 849, 012014.	0.4	1
22	Performance of the HERMES beamline at the carbon K-edge. Journal of Physics: Conference Series, 2017, 849, 012046.	0.4	13
23	Development of a fluidic cell to image precipitation reactions by x-ray microscopy. , 2017, , .		0
24	X-ray spectromicroscopy of nanoparticulate iron oxide phases. Biointerphases, 2016, 11, 04B402.	1.6	1
25	XANES studies of titanium dioxide nanoparticles synthesized by using Peltophorum pterocarpum plant extract. Physica B: Condensed Matter, 2016, 503, 86-92.	2.7	18
26	HERMES: a soft X-ray beamline dedicated to X-ray microscopy. Journal of Synchrotron Radiation, 2015, 22, 968-979.	2.4	70
27	Effect of Chalcogens on Electronic and Photophysical Properties of Vinylene-Based Diketopyrrolopyrrole Copolymers. Journal of Physical Chemistry B, 2015, 119, 11307-11316.	2.6	25
28	Differences in NEXAFS of odd/even long chain n-alkane crystals. Journal of Electron Spectroscopy and Related Phenomena, 2013, 191, 60-64.	1.7	6
29	Engineering biodegradable polymer blends containing flame retardant-coated starch/nanoparticles. Polymer, 2012, 53, 4787-4799.	3.8	35
30	Calibrated NEXAFS spectra of common conjugated polymers. Journal of Chemical Physics, 2011, 134, 024702.	3.0	111
31	Interfaces in organic devices studied with resonant soft x-ray reflectivity. Journal of Applied Physics, 2011, 110, .	2.5	27
32	Influence of Annealing and Interfacial Roughness on the Performance of Bilayer Donor/Acceptor Polymer Photovoltaic Devices. Advanced Functional Materials, 2010, 20, 4329-4337.	14.9	105
33	Nonâ€Ðestructive Subâ€Surface Chemical Characterization of Airâ€Exposed Plasma Polymers by Energyâ€Resolved XPS. Plasma Processes and Polymers, 2010, 7, 474-481.	3.0	20
34	Resonant Soft X-ray Scattering of Polymers with a 2D Detector: Initial Results and System Developments at the Advanced Light Source. IOP Conference Series: Materials Science and Engineering, 2010, 14, 012016.	0.6	24
35	Nanomorphology of Bulk Heterojunction Photovoltaic Thin Films Probed with Resonant Soft X-ray Scattering. Nano Letters, 2010, 10, 2863-2869.	9.1	182
36	The utility of resonant soft x-ray scattering and reflectivity for the nanoscale characterization of polymers. European Physical Journal: Special Topics, 2009, 167, 121-126.	2.6	34

SUFAL SWARAJ

#	Article	IF	CITATIONS
37	NEXAFS microscopy of polymeric materials: Successes and challenges encountered when characterizing organic devices. Journal of Physics: Conference Series, 2009, 186, 012102.	0.4	3
38	Surface Chemical Analysis of Plasmaâ€Deposited Copolymer Films Prepared from Feed Gas Mixtures of Ethylene or Styrene with Allylamine. Plasma Processes and Polymers, 2008, 5, 92-104.	3.0	18
39	Evolution of the nanomorphology of photovoltaic polyfluorene blends: sub-100 nm resolution with x-ray spectromicroscopy. Nanotechnology, 2008, 19, 424015.	2.6	47
40	Ageing Studies of Plasma Deposited Organic Films by Surface Chemical Analysis (ESCA, ToF-SIMS, XAS). Materials Science Forum, 2007, 539-543, 623-628.	0.3	3
41	Surface Chemical Analysis of Plasma-Deposited Copolymer Films Prepared from Feed Gas Mixtures of Ethylene or Styrene with Allyl Alcohol. Plasma Processes and Polymers, 2007, 4, 376-389.	3.0	21
42	Aging of Plasma-Deposited Films Prepared from Organic Monomers. Plasma Processes and Polymers, 2007, 4, S784-S789.	3.0	26
43	Radio frequency (r.f.) plasma-deposited polymer films: influence of external plasma parameters as viewed by comprehensivein-situ surface chemical analysis by XAS, XPS and ToF-SIMS. Surface and Interface Analysis, 2006, 38, 522-525.	1.8	14
44	Surface Analysis of Plasma Deposited Polymer Films, 7. Plasma Processes and Polymers, 2006, 3, 288-298.	3.0	72
45	Static ToF-SIMS analysis of plasma chemically deposited ethylene/allyl alcohol co-polymer films. Applied Surface Science, 2006, 252, 6588-6590.	6.1	7
46	Characterisation of plasma polymers by thermoluminescence. Surface and Coatings Technology, 2006, 201, 543-552.	4.8	14
47	Study of influence of external plasma parameters on plasma polymerised films prepared from organic molecules (acrylic acid, allyl alcohol, allyl amine) using XPS and NEXAFS. Surface and Coatings Technology, 2005, 200, 494-497.	4.8	45
48	Surface analysis of plasma-deposited polymer films by Time of Flight Static Secondary Ion Mass Spectrometry (ToF-SSIMS) before and after exposure to ambient air. Surface and Coatings Technology, 2005, 200, 463-467.	4.8	26
49	Surface Analysis of Plasma-Deposited Polymer Films, 4. Plasma Processes and Polymers, 2005, 2, 310-318.	3.0	18
50	Surface Analysis of Plasma Deposited Polymer Films, 5. Plasma Processes and Polymers, 2005, 2, 563-571.	3.0	28
51	Surface Analysis of Plasma-Deposited Polymer Films, 6. Plasma Processes and Polymers, 2005, 2, 572-580.	3.0	42
52	Spectroscopic characterization of single-walled carbon nanotubes carrier-doped by encapsulation of TCNQ. Physical Review B, 2005, 71, .	3.2	34
53	Surface Analysis of Plasma-Deposited Polymer Films, 1. Plasma Processes and Polymers, 2004, 1, 123-133.	3.0	32
54	Surface Analysis of Plasma-Deposited Polymer Films, 2. Plasma Processes and Polymers, 2004, 1, 134-140.	3.0	27

#	Article	IF	CITATIONS
55	Surface Analysis of Plasma-Deposited Polymer Films, 3. Plasma Processes and Polymers, 2004, 1, 141-152.	3.0	24
56	Spatial distribution of starch, proteins and lipids in maize endosperm probed by scanning transmission X-ray microscopy. Journal of Spectral Imaging, 0, , .	0.0	1