David F Dolan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11252771/publications.pdf

Version: 2024-02-01

3,061 62 citations papers

30 54 h-index g-index 63 63 63 2348 all docs docs citations times ranked citing authors

159585

161849

#	Article	IF	Citations
1	Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nature Medicine, 2005, 11, 271-276.	30.7	672
2	Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Human Molecular Genetics, 2003, 12, 2049-2061.	2.9	327
3	Laser Doppler velocimetry of basilar membrane vibration. Hearing Research, 1991, 51, 203-213.	2.0	134
4	Steadyâ€state sinusoidal velocity responses of the basilar membrane in guinea pig. Journal of the Acoustical Society of America, 1996, 99, 1556-1565.	1.1	133
5	Mutation of the novel gene Tmie results in sensory cell defects in the inner ear of spinner, a mouse model of human hearing loss DFNB6. Human Molecular Genetics, 2002, 11, 1887-1898.	2.9	97
6	Masked cochlear whole-nerve response intensity functions altered by electrical stimulation of the crossed olivocochlear bundle. Journal of the Acoustical Society of America, 1988, 83, 1081-1086.	1.1	90
7	OTO-104. Otology and Neurotology, 2011, 32, 171-179.	1.3	87
8	Asynchronous neural activity recorded from the round window. Journal of the Acoustical Society of America, 1990, 87, 2621-2627.	1.1	77
9	Hair cells in the inner ear of the pirouette and shaker 2 mutant mice. Journal of Neurocytology, 2000, 29, 227-240.	1.5	69
10	The 133-kDa N-terminal domain enables myosin 15 to maintain mechanotransducing stereocilia and is essential for hearing. ELife, $2015,4,.$	6.0	67
11	Deafness and Permanently Reduced Potassium Channel Gene Expression and Function in Hypothyroid <i>Pit1</i> ^{dw} Mutants. Journal of Neuroscience, 2009, 29, 1212-1223.	3.6	66
12	Frequency-dependent enhancement of basilar membrane velocity during olivocochlear bundle stimulation. Journal of the Acoustical Society of America, 1997, 102, 3587-3596.	1.1	64
13	Genetic Mapping Refines DFNB3 to 17p11.2, Suggests Multiple Alleles of DFNB3, and Supports Homology to the Mouse Model shaker-2. American Journal of Human Genetics, 1998, 62, 904-915.	6.2	63
14	Math5 expression and function in the central auditory system. Molecular and Cellular Neurosciences, 2008, 37, 153-169.	2.2	61
15	Heat shock factor 1-deficient mice exhibit decreased recovery of hearing following noise overstimulation. Journal of Neuroscience Research, 2005, 81, 589-596.	2.9	56
16	Severe vestibular and auditory impairment in three alleles of Ames waltzer (av) mice. Hearing Research, 2001, 151, 237-249.	2.0	46
17	Acquired resistance to acoustic trauma by sound conditioning is primarily mediated by changes restricted to the cochlea, not by systemic responses. Hearing Research, 1999, 127, 31-40.	2.0	40
18	Chronic excitotoxicity in the guinea pig cochlea induces temporary functional deficits without disrupting otoacoustic emissions. Journal of the Acoustical Society of America, 2004, 116, 1044-1056.	1,1	39

#	Article	IF	Citations
19	Monoclonal antibody induced hearing loss. Hearing Research, 1995, 83, 101-113.	2.0	38
20	KHRI-3 monoclonal antibody-induced damage to the inner ear: antibody staining of nascent scars. Hearing Research, 1999, 129, 50-60.	2.0	38
21	Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear. Development (Cambridge), 2012, 139, 4666-4674.	2.5	38
22	Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome. Hearing Research, 2011, 282, 184-195.	2.0	36
23	Efferent-mediated adaptation of the DPOAE as a predictor of aminoglycoside toxicity. Hearing Research, 2005, 201, 99-108.	2.0	35
24	Dietary thyroid hormone replacement ameliorates hearing deficits in hypothyroid mice. Mammalian Genome, 2007, 18, 596-608.	2.2	35
25	Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus. Neuroscience, 2016, 332, 242-257.	2.3	35
26	Disruption of Lateral Olivocochlear Neurons via a Dopaminergic Neurotoxin Depresses Sound-Evoked Auditory Nerve Activity. JARO - Journal of the Association for Research in Otolaryngology, 2005, 6, 48-62.	1.8	33
27	Characterization of an EPSPâ€like potential recorded remotely from the round window. Journal of the Acoustical Society of America, 1989, 86, 2167-2171.	1.1	32
28	Conditioning the Cochlea to Facilitate Survival and Integration of Exogenous Cells into the Auditory Epithelium. Molecular Therapy, 2014, 22, 873-880.	8.2	32
29	Inner hair cell responses to the 2f1â€ f 2 intermodulation distortion product. Journal of the Acoustical Society of America, 1990, 87, 782-790.	1.1	31
30	Induction of Heat Shock Proteins by Hyperthermia and Noise Overstimulation in Hsf1 \hat{a} '/ \hat{a} ' Mice. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 29-37.	1.8	31
31	Nutrient plasma levels achieved during treatment that reduces noise-induced hearing loss. Translational Research, 2011, 158, 54-70.	5.0	30
32	Experimental Model of Immune-Mediated Hearing Loss Using Cross-Species Immunization. Laryngoscope, 1990, 100, 941???947.	2.0	29
33	OTO-201. Otology and Neurotology, 2014, 35, 459-469.	1.3	28
34	Myo15 function is distinct from Myo6, Myo7a and pirouette genes in development of cochlear stereocilia. Human Molecular Genetics, 2003, 12, 2797-2805.	2.9	27
35	The medial cochlear efferent system does not appear to contribute to the development of acquired resistance to acoustic trauma. Hearing Research, 1998, 120, 143-151.	2.0	24
36	The role of bone morphogenetic protein 4 in inner ear development and function. Hearing Research, 2007, 225, 71-79.	2.0	24

#	Article	IF	CITATIONS
37	Chronic strychnine administration into the cochlea potentiates permanent threshold shift following noise exposure. Hearing Research, 1997, 112, 13-20.	2.0	22
38	Transgene correction maintains normal cochlear structure and function in 6-month-old Myo15a mutant mice. Hearing Research, 2006, 214, 37-44.	2.0	20
39	Whirler Mutant Hair Cells Have Less Severe Pathology than Shaker 2 or Double Mutants. JARO - Journal of the Association for Research in Otolaryngology, 2007, 8, 329-337.	1.8	19
40	Basilar membrane velocity noise. Hearing Research, 1997, 114, 35-42.	2.0	18
41	Ototoxicity-induced loss of hearing and inner hair cells is attenuated by HSP70 gene transfer. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15019.	4.1	18
42	GJB2 gene therapy and conditional deletion reveal developmental stage-dependent effects on inner ear structure and function. Molecular Therapy - Methods and Clinical Development, 2021, 23, 319-333.	4.1	15
43	Safety of Ciprofloxacin and Dexamethasone in the Guinea Pig Middle Ear. JAMA Otolaryngology, 2009, 135, 575.	1.2	14
44	Genetic Background of Prop1 df Mutants Provides Remarkable Protection Against Hypothyroidism-Induced Hearing Impairment. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 173-184.	1.8	14
45	Small Arms Fire-like noise: Effects on Hearing Loss, Gap Detection and the Influence of Preventive Treatment. Neuroscience, 2019, 407, 32-40.	2.3	14
46	Characterization of Two Transgene Insertional Mutations at Pirouette, a Mouse Deafness Locus. Audiology and Neuro-Otology, 2004, 9, 303-314.	1.3	13
47	Electromotile hearing: Acoustic tones mask psychophysical response to high-frequency electrical stimulation of intact guinea pig cochle. Journal of the Acoustical Society of America, 2006, 120, 3889-3900.	1.1	13
48	Generation and Characterization of $\hat{l}\pm 9$ and $\hat{l}\pm 10$ Nicotinic Acetylcholine Receptor Subunit Knockout Mice on a C57BL/6J Background. Frontiers in Neuroscience, 2017, 11, 516.	2.8	13
49	Grxcr2 is required for stereocilia morphogenesis in the cochlea. PLoS ONE, 2018, 13, e0201713.	2.5	11
50	Rapamycin Added to Diet in Late Mid-Life Delays Age-Related Hearing Loss in UMHET4 Mice. Frontiers in Cellular Neuroscience, 2021, 15, 658972.	3.7	11
51	Inner hair cell responses to tonal stimulation in the presence of broadband noise. Journal of the Acoustical Society of America, 1989, 86, 1007-1012.	1.1	10
52	Cochlear microphonic enhancement in two tone interactions. Hearing Research, 1991, 51, 235-245.	2.0	10
53	Inferior colliculus stimulation causes similar efferent effects on ipsilateral and contralateral cochlear potentials in the guinea pig. Brain Research, 2006, 1081, 138-149.	2.2	9
54	A Modifier Gene Alleviates Hypothyroidism-Induced Hearing Impairment in Pou1f1dw Dwarf Mice. Genetics, 2011, 189, 665-673.	2.9	9

#	Article	IF	CITATIONS
55	Disruption of lateral olivocochlear neurons with a dopaminergic neurotoxin depresses spontaneous auditory nerve activity. Neuroscience Letters, 2014, 582, 54-58.	2.1	9
56	The Mechanism and Site of Action of Lidocaine Hydrochloride in Guinea Pig. Acta Oto-Laryngologica, 1997, 117, 523-528.	0.9	7
57	The effects of efferent activation on the acoustically and electrically evoked otoacoustic emission. Hearing Research, 2000, 148, 124-136.	2.0	7
58	Exploring efferent-mediated DPOAE adaptation in three different guinea pig strains. Hearing Research, 2007, 224, 27-33.	2.0	6
59	Effects of Calcitonin-Gene-Related-Peptide on Auditory Nerve Activity. Frontiers in Cell and Developmental Biology, 2021, 9, 752963.	3.7	6
60	Long-Term Effects of Acoustic Trauma on Electrically Evoked Otoacoustic Emission. JARO - Journal of the Association for Research in Otolaryngology, 2006, 6, 324-340.	1.8	5
61	Morphological and physiological effects of long duration infusion of strychnine into the organ of Corti. Journal of Neurocytology, 1999, 28, 197-206.	1.5	4
62	Basal Turn Hair Cell Activity Dominates the Round Window Recorded Simple Difference Tone (F2-F1)., 1992, , 117-124.		0