Joanna Górka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11252454/publications.pdf

Version: 2024-02-01

29 1,584 18 27
papers citations h-index g-index

29 29 29 2492

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects. Nano Energy, 2018, 44, 327-335.	8.2	229
2	Recent Progress in Design of Biomass-Derived Hard Carbons for Sodium Ion Batteries. Journal of Carbon Research, 2016, 2, 24.	1.4	53
3	Impact of Pore Size on the Sorption of Uranyl under Seawater Conditions. Industrial & Description of Engineering Chemistry Research, 2016, 55, 4339-4343.	1.8	18
4	The electrochemical reactions of SnO2 with Li and Na: A study using thin films and mesoporous carbons. Journal of Power Sources, 2015, 284, 1-9.	4.0	27
5	Synthesis of mesoporous silica-tethered phosphonic acid sorbents for uranium species from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 1-8.	2.3	39
6	Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. Journal of Materials Chemistry A, 2015 , 3 , $11650-11659$.	5.2	177
7	Enhanced CO2/N2 selectivity in amidoxime-modified porous carbon. Carbon, 2014, 67, 457-464.	5.4	92
8	AlSb thin films as negative electrodes for Li-ion and Na-ion batteries. Journal of Power Sources, 2013, 243, 699-705.	4.0	89
9	Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using îCu6Sn5 thin films as a model system. Physical Chemistry Chemical Physics, 2013, 15, 10885.	1.3	38
10	Sonochemical functionalization of mesoporous carbon for uranium extraction from seawater. Journal of Materials Chemistry A, 2013, 1, 3016.	5.2	132
11	Adsorption by Soft-Templated Carbons. , 2012, , 323-350.		1
12	Soft-templating synthesis of ordered mesoporous carbons in the presence of tetraethyl orthosilicate and silver salt. Microporous and Mesoporous Materials, 2012, 156, 121-126.	2.2	19
13	Adsorption Properties of Micro-/Meso-Porous Carbons Obtained by Colloidal Templating and Post-Synthesis KOH Activation. Adsorption Science and Technology, 2011, 29, 457-465.	1.5	2
14	Soft-templating synthesis and adsorption properties ofÂmesoporous carbons withÂembedded silver nanoparticles. Adsorption, 2011, 17, 461-466.	1.4	13
15	Hierarchically porous phenolic resin-based carbons obtained by block copolymer-colloidal silica templating and post-synthesis activation with carbon dioxide and water vapor. Carbon, 2011, 49, 154-160.	5.4	119
16	Adsorption properties of phenolic resin-based mesoporous carbons obtained by using mixed templates of Pluronic F127 and Brij 58 or Brij 78 polymers. Adsorption, 2010, 16, 377-383.	1.4	13
17	Development of Microporosity in Mesoporous Carbons. Topics in Catalysis, 2010, 53, 283-290.	1.3	16
18	Adsorption and structural properties of soft-templated mesoporous carbons obtained by carbonization at different temperatures and KOH activation. Applied Surface Science, 2010, 256, 5187-5190.	3.1	38

#	Article	IF	CITATIONS
19	Polymer-templated mesoporous carbons with nickel nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 362, 20-27.	2.3	13
20	Tailoring Adsorption and Framework Properties of Mesoporous Polymeric Composites and Carbons by Addition of Organosilanes during Soft-Templating Synthesis. Journal of Physical Chemistry C, 2010, 114, 6298-6303.	1.5	28
21	Mesoporous metal organic framework–boehmite and silica composites. Chemical Communications, 2010, 46, 6798.	2.2	74
22	Ordered mesoporous carbon/α-alumina nanosheet composites. Nanoscale, 2010, 2, 2868.	2.8	7
23	Synthesis and adsorption properties of colloid-imprinted mesoporous carbons using poly(vinylidene) Tj ETQq1 1	0.784314 1.4	, 4 rgBT /Over o
24	Synthesis and properties of mesoporous carbons with high loadings of inorganic species. Carbon, 2009, 47, 3034-3040.	5.4	42
25	Three-dimensional cubic (Im3m) periodic mesoporous organosilicas with benzene- and thiophene-bridging groups. Journal of Materials Chemistry, 2009, 19, 2076.	6.7	43
26	Mesoporous carbons synthesized by soft-templating method: Determination of pore size distribution from argon and nitrogen adsorption isotherms. Microporous and Mesoporous Materials, 2008, 112, 573-579.	2.2	36
27	KOH activation of mesoporous carbons obtained by soft-templating. Carbon, 2008, 46, 1159-1161.	5.4	168
28	Colloidal Silica Templating Synthesis of Carbonaceous Monoliths Assuring Formation of Uniform Spherical Mesopores and Incorporation of Inorganic Nanoparticles. Chemistry of Materials, 2008, 20, 1069-1075.	3.2	52
29	SBA-15 TEMPLATING SYNTHESIS AND PROPERTIES OF PYRROLE-BASED ORDERED MESOPOROUS CARBONS. , 2008, , .		O