Ping Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11252044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nature Communications, 2022, 13, 1204.	12.8	40
2	Chimeric Antigen Receptor Designed to Prevent Ubiquitination and Downregulation Showed Durable Antitumor Efficacy. Immunity, 2020, 53, 456-470.e6.	14.3	83
3	Cell Cycle Inhibitor Whi5 Records Environmental Information to Coordinate Growth and Division in Yeast. Cell Reports, 2019, 29, 987-994.e5.	6.4	38
4	Synthetic immunology: T-cell engineering and adoptive immunotherapy. Synthetic and Systems Biotechnology, 2018, 3, 179-185.	3.7	23
5	Design of Tunable Oscillatory Dynamics in a Synthetic NF-κB Signaling Circuit. Cell Systems, 2017, 5, 460-470.e5.	6.2	39
6	Differential genetic interactions of yeast stress response <scp>MAPK</scp> pathways. Molecular Systems Biology, 2015, 11, 800.	7.2	47
7	Oscillatory stress stimulation uncovers an Achilles' heel of the yeast MAPK signaling network. Science, 2015, 350, 1379-1383.	12.6	86
8	The minimal αâ€crystallin domain of Mj Hsp16.5 is functional at nonâ€heatâ€shock conditions. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1156-1167.	2.6	3
9	Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature, 2012, 488, 384-388.	27.8	118
10	Rapid Diversification of Cell Signaling Phenotypes by Modular Domain Recombination. Science, 2010, 328, 368-372.	12.6	136
11	Maturation Mechanism of Severe Acute Respiratory Syndrome (SARS) Coronavirus 3C-like Proteinase. Journal of Biological Chemistry, 2010, 285, 28134-28140.	3.4	50
12	Preheating induced homogeneity of the small heat shock protein from Methanococcus jannaschii. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 489-495.	2.3	9
13	Isatin Compounds as Noncovalent SARS Coronavirus 3C-like Protease Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 3440-3443.	6.4	110
14	The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase. Biochemical and Biophysical Research Communications, 2006, 339, 865-872.	2.1	83
15	Quaternary Structure, Substrate Selectivity and Inhibitor Design for SARS 3C-Like Proteinase. Current Pharmaceutical Design, 2006, 12, 4555-4564.	1.9	28
16	Only One Protomer Is Active in the Dimer of SARS 3C-like Proteinase*. Journal of Biological Chemistry, 2006, 281, 13894-13898.	3.4	104
17	The interaction between severe acute respiratory syndrome coronavirus 3C-like proteinase and a dimeric inhibitor by capillary electrophoresis. Analytical Biochemistry, 2005, 343, 159-165.	2.4	35
18	Virtual Screening of Novel Noncovalent Inhibitors for SARS-CoV 3C-like Proteinase. Journal of Chemical Information and Modeling, 2005, 45, 10-17.	5.4	65

PING WEI

#	Article	IF	CITATIONS
19	The substrate specificity of SARS coronavirus 3C-like proteinase. Biochemical and Biophysical Research Communications, 2005, 329, 934-940.	2.1	80
20	Biosynthesis, Purification, and Substrate Specificity of Severe Acute Respiratory Syndrome Coronavirus 3C-like Proteinase. Journal of Biological Chemistry, 2004, 279, 1637-1642.	3.4	280
21	3C-like Proteinase from SARS Coronavirus Catalyzes Substrate Hydrolysis by a General Base Mechanism. Biochemistry, 2004, 43, 4568-4574.	2.5	189