
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11250099/publications.pdf Version: 2024-02-01

PHILINE WANCEMANN

#	Article	IF	CITATIONS
1	P2RX2 and P2RX4 receptors mediate cation absorption in transitional cells and supporting cells of the utricular macula. Hearing Research, 2020, 386, 107860.	0.9	5
2	Gene therapy for hereditary hearing loss by SLC26A4 mutations in mice reveals distinct functional roles of pendrin in normal hearing. Theranostics, 2019, 9, 7184-7199.	4.6	35
3	Tmc2 expression partially restores auditory function in a mouse model of DFNB7/B11 deafness caused by loss of Tmc1 function. Scientific Reports, 2018, 8, 12125.	1.6	22
4	Claudin expression during early postnatal development of the murine cochlea. BMC Physiology, 2018, 18, 1.	3.6	5
5	Acute genetic ablation of pendrin lowers blood pressure in mice. Nephrology Dialysis Transplantation, 2017, 32, gfw393.	0.4	31
6	Mouse Models Reveal the Role of Pendrin in the Inner Ear. , 2017, , 7-22.		2
7	Ion and Fluid Homeostasis in the Cochlea. Springer Handbook of Auditory Research, 2017, , 253-286.	0.3	7
8	The gastric H,K-ATPase in stria vascularis contributes to pH regulation of cochlear endolymph but not to K secretion. BMC Physiology, 2017, 17, 1.	3.6	10
9	Molecular architecture underlying fluid absorption by the developing inner ear. ELife, 2017, 6, .	2.8	43
10	Ryanodine-induced vasoconstriction of the gerbil spiral modiolar artery depends on the Ca2+ sensitivity but not on Ca2+ sparks or BK channels. BMC Physiology, 2016, 16, 6.	3.6	3
11	Slc26a4 expression prevents fluctuation of hearing in a mouse model of large vestibular aqueduct syndrome. Neuroscience, 2016, 329, 74-82.	1.1	49
12	Chemical synthesis of tetracyclic terpenes and evaluation of antagonistic activity on endothelin-A receptors and voltage-gated calcium channels. Bioorganic and Medicinal Chemistry, 2015, 23, 5985-5998.	1.4	13
13	ILDR1 null mice, a model of human deafness DFNB42, show structural aberrations of tricellular tight junctions and degeneration of auditory hair cells. Human Molecular Genetics, 2015, 24, 609-624.	1.4	58
14	Slc26a7 Chloride Channel Activity and Localization in Mouse Reissner's Membrane Epithelium. PLoS ONE, 2014, 9, e97191.	1.1	20
15	Slc26a4-insufficiency causes fluctuating hearing loss and stria vascularis dysfunction. Neurobiology of Disease, 2014, 66, 53-65.	2.1	58
16	SLC26A4 Targeted to the Endolymphatic Sac Rescues Hearing and Balance in Slc26a4 Mutant Mice. PLoS Genetics, 2013, 9, e1003641.	1.5	57
17	Mouse Models for Pendrin-Associated Loss of Cochlear and Vestibular Function. Cellular Physiology and Biochemistry, 2013, 32, 157-165.	1.1	35
18	NOS Inhibition Enhances Myogenic Tone by Increasing Rho-Kinase Mediated Ca2+ Sensitivity in the Male but Not the Female Gerbil Spiral Modiolar Artery. PLoS ONE, 2013, 8, e53655.	1.1	6

#	Article	IF	CITATIONS
19	Endolymphatic Na+ and K+ Concentrations during Cochlear Growth and Enlargement in Mice Lacking Slc26a4/pendrin. PLoS ONE, 2013, 8, e65977.	1.1	15
20	<i>SLC26A4</i> mutation testing for hearing loss associated with enlargement of the vestibular aqueduct. World Journal of Otorhinolaryngology, 2013, 3, 26.	0.1	9
21	BK channels are not involved in the ryanodineâ€induced vasoconstriction of the spiral modiolar artery. FASEB Journal, 2013, 27, 687.3.	0.2	Ο
22	Targeted expression of SLC26A4 rescues hearing and balance in Slc26a4 Δ/Δ mice. FASEB Journal, 2013, 27, 736.3.	0.2	0
23	Molecular and pharmacological characteristics of the gerbil $\hat{l}\pm 1$ a-adrenergic receptor. Hearing Research, 2012, 283, 144-150.	0.9	1
24	Calcium sparks, BK and SK channels regulate myogenic tone in the gerbil spiral modiolar artery. FASEB Journal, 2012, 26, 676.4.	0.2	0
25	Hearing loss associated with enlargement of the vestibular aqueduct: Mechanistic insights from clinical phenotypes, genotypes, and mouse models. Hearing Research, 2011, 281, 11-17.	0.9	68
26	Epithelial Cell Stretching and Luminal Acidification Lead to a Retarded Development of Stria Vascularis and Deafness in Mice Lacking Pendrin. PLoS ONE, 2011, 6, e17949.	1.1	53
27	Gender Differences in Myogenic Regulation along the Vascular Tree of the Gerbil Cochlea. PLoS ONE, 2011, 6, e25659.	1.1	11
28	Developmental expression of solute carrier family 26A member 4 (SLC26A4/pendrin) during amelogenesis in developing rodent teeth. European Journal of Oral Sciences, 2011, 119, 185-192.	0.7	30
29	Calcium sparks in the intact gerbil spiral modiolar artery. BMC Physiology, 2011, 11, 15.	3.6	6
30	<i>SLC26A4</i> Genotypes and Phenotypes Associated with Enlargement of the Vestibular Aqueduct. Cellular Physiology and Biochemistry, 2011, 28, 545-552.	1.1	68
31	The Role of Pendrin in the Development of the Murine Inner Ear. Cellular Physiology and Biochemistry, 2011, 28, 527-534.	1.1	31
32	Mouse model of enlarged vestibular aqueducts defines temporal requirement of Slc26a4 expression for hearing acquisition. Journal of Clinical Investigation, 2011, 121, 4516-4525.	3.9	106
33	Expression of epithelial calcium transport system in rat cochlea and vestibular labyrinth. BMC Physiology, 2010, 10, 1.	3.6	68
34	Inner ear fluid homeostasis. , 2010, , .		5
35	Cochlear and Vestibular Function and Dysfunction. , 2010, , 425-437.		3
36	Tumor Necrosis Factor-α Enhances Microvascular Tone and Reduces Blood Flow in the Cochlea via Enhanced Sphingosine-1-Phosphate Signaling. Stroke, 2010, 41, 2618-2624.	1.0	69

#	Article	IF	CITATIONS
37	Failure of Fluid Absorption in the Endolymphatic Sac Initiates Cochlear Enlargement that Leads to Deafness in Mice Lacking Pendrin Expression. PLoS ONE, 2010, 5, e14041.	1.1	74
38	TNFα compromises the inner ear microcirculation in a sphingosine kinase 1/sphingosineâ€1â€phosphate dependent manner ―a novel mechanism for sudden hearing loss (SHL). FASEB Journal, 2010, 24, 590.17.	0.2	0
39	Sphingosineâ€1â€phosphate and endothelinâ€1 cause vasoconstriction of inner ear capillaries. FASEB Journal, 2010, 24, 973.12.	0.2	Ο
40	Potassium Ion Movement in the Inner Ear: Insights from Genetic Disease and Mouse Models. Physiology, 2009, 24, 307-316.	1.6	186
41	A Claudin-9–Based Ion Permeability Barrier Is Essential for Hearing. PLoS Genetics, 2009, 5, e1000610.	1.5	102
42	Developmental delays consistent with cochlear hypothyroidism contribute to failure to develop hearing in mice lacking <i>Slc26a4</i> /pendrin expression. American Journal of Physiology - Renal Physiology, 2009, 297, F1435-F1447.	1.3	64
43	Mutations of KCNJ10 Together with Mutations of SLC26A4 Cause Digenic Nonsyndromic Hearing Loss Associated with Enlarged Vestibular Aqueduct Syndrome. American Journal of Human Genetics, 2009, 84, 651-657.	2.6	144
44	Free radical stress-mediated loss of Kcnj10 protein expression in stria vascularis contributes to deafness in Pendred syndrome mouse model. American Journal of Physiology - Renal Physiology, 2008, 294, F139-F148.	1.3	69
45	Cochlear Homeostasis and Homeostatic Disorders. , 2008, , 49-100.		2
46	Lack of pendrin HCO3â^' transport elevates vestibular endolymphatic [Ca2+] by inhibition of acid-sensitive TRPV5 and TRPV6 channels. American Journal of Physiology - Renal Physiology, 2007, 292, F1314-F1321.	1.3	119
47	Functional significance of channels and transporters expressed in the inner ear and kidney. American Journal of Physiology - Cell Physiology, 2007, 293, C1187-C1208.	2.1	217
48	Loss of cochlear HCO3â^' secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. American Journal of Physiology - Renal Physiology, 2007, 292, F1345-F1353.	1.3	221
49	Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. Journal of Physiology, 2006, 576, 11-21.	1.3	401
50	Macrophage invasion contributes to degeneration of stria vascularis in Pendred syndrome mouse model. BMC Medicine, 2006, 4, 37.	2.3	56
51	Pharmacological reversal of endothelin-1 mediated constriction of the spiral modiolar artery: a potential new treatment for sudden sensorineural hearing loss. BMC Ear, Nose and Throat Disorders, 2005, 5, 10.	2.6	19
52	Apical membrane P2Y4 purinergic receptor controls K+ secretion by strial marginal cell epithelium. Cell Communication and Signaling, 2005, 3, 13.	2.7	20
53	Microarray-based comparison of three amplification methods for nanogram amounts of total RNA. American Journal of Physiology - Cell Physiology, 2005, 288, C1179-C1189.	2.1	68
54	Neurogenic regulation of cochlear blood flow occurs along the basilar artery, the anterior inferior cerebellar artery and at branch points of the spiral modiolar artery. Hearing Research, 2005, 209, 91-96.	0.9	20

#	Article	IF	CITATIONS
55	Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Medicine, 2004, 2, 30.	2.3	241
56	K ⁺ Cycling and Its Regulation in the Cochlea and the Vestibular Labyrinth. Audiology and Neuro-Otology, 2002, 7, 199-205.	0.6	91
57	Adrenergic and Muscarinic Control of Cochlear Endolymph Production. , 2002, 59, 42-50.		17
58	Cochlear Blood Flow Regulation. , 2002, 59, 51-57.		31
59	ET _A Receptors in the Gerbil Spiral Modiolar Artery. , 2002, 59, 58-65.		9
60	KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. American Journal of Physiology - Cell Physiology, 2002, 282, C403-C407.	2.1	305
61	Endothelin-1–Induced Vasospasms of Spiral Modiolar Artery Are Mediated by Rho-Kinase–Induced Ca 2+ Sensitization of Contractile Apparatus and Reversed by Calcitonin Gene–Related Peptide. Stroke, 2002, 33, 2965-2971.	1.0	41
62	K+ cycling and the endocochlear potential. Hearing Research, 2002, 165, 1-9.	0.9	409
63	Chloride secretion by semicircular canal duct epithelium is stimulated via β ₂ -adrenergic receptors. American Journal of Physiology - Cell Physiology, 2002, 283, C1752-C1760.	2.1	37
64	Targeted Ablation of Connexin26 in the Inner Ear Epithelial Gap Junction Network Causes Hearing Impairment and Cell Death. Current Biology, 2002, 12, 1106-1111.	1.8	409
65	Functional β ₂ -Adrenergic Receptors Are Present in Nonstrial Tissues of the Lateral Wall in the Gerbil Cochlea. Audiology and Neuro-Otology, 2001, 6, 124-131.	0.6	18
66	The isolated in vitro perfused spiral modiolar artery: pressure dependence of vasoconstriction. Hearing Research, 1998, 115, 113-118.	0.9	22
67	Ca2+-dependence and nifedipine-sensitivity of vascular tone and contractility in the isolated superfused spiral modiolar artery in vitro. Hearing Research, 1998, 118, 90-100.	0.9	17
68	α1A-Adrenergic receptors mediate vasoconstriction of the isolated spiral modiolar artery in vitro. Hearing Research, 1998, 119, 113-124.	0.9	30
69	Endothelin-A receptors mediate vasoconstriction of capillaries in the spiral ligament. Hearing Research, 1997, 112, 106-114.	0.9	16
70	Functional evidence for a monocarboxylate transporter (MCT) in strial marginal cells and molecular evidence for MCT1 and MCT2 in stria vascularis. Hearing Research, 1997, 114, 213-222.	0.9	17
71	I(sK) Channel in Strial Marginal Cells. Voltage-Dependence, Ion-Selectivity, Inhibition by 293B and Sensitivity to Clofilium. Auditory Neuroscience, 1997, 3, 215-230.	0.2	10
72	Osmotic water permeability of capillaries from the isolated spiral ligament: new in-vitro techniques for the study of vascular permeability and diameter. Hearing Research, 1996, 95, 49-56.	0.9	11

#	Article	IF	CITATIONS
73	Vestibular dark cells contain the exchanger NHE-1 in the basolateral membrane. Hearing Research, 1996, 94, 94-106.	0.9	28
74	K+-induced stimulation of K+ secretion involves activation of the IsK channel in vestibular dark cells. Hearing Research, 1996, 100, 201-210.	0.9	42
75	Inner Ear Defects Induced by Null Mutationof the isk Gene. Neuron, 1996, 17, 1251-1264.	3.8	380
76	Homeostatic Mechanisms in the Cochlea. Springer Handbook of Auditory Research, 1996, , 130-185.	0.3	114
77	Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hearing Research, 1995, 90, 149-157.	0.9	223
78	Ion selectivity of volume regulatory mechanisms present during a hypoosmotic challenge in vestibular dark cells. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1240, 48-54.	1.4	16
79	lon transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hearing Research, 1995, 84, 19-29.	0.9	238
80	Ba2+ and amiloride uncover or induce a pH-sensitive and a Na+ or non-selective cation conductance in transitional cells of the inner ear. Pflugers Archiv European Journal of Physiology, 1994, 426, 258-266.	1.3	10
81	Transepithelial voltage and resistance of vestibular dark cell epithelium from the gerbil ampulla. Hearing Research, 1994, 73, 101-108.	0.9	57
82	N-Ethylmaleimide Stimulates and Inhibits Ion Transport in Vestibular Dark Cells of Gerbil. Auditory Neuroscience, 1994, 1, 101-109.	0.2	1
83	Two types of chloride channel in the basolateral membrane of vestibular dark cells. Hearing Research, 1993, 69, 124-132.	0.9	38
84	Aminoglycoside antibiotics inhibit maxi-K+ channel in single isolated cochlear efferent nerve terminals. Hearing Research, 1993, 67, 13-19.	0.9	25
85	The Na+/H+ exchanger in transitional cells of the inner ear. Hearing Research, 1993, 69, 107-114.	0.9	16
86	Maxi-K+ channel in single isolated cochlear efferent nerve terminals. Hearing Research, 1993, 66, 123-129.	0.9	23
87	The membrane potential of vestibular dark cells is controlled by a large Clâ^' conductance. Hearing Research, 1992, 62, 149-156.	0.9	37
88	Ca2+-activated nonselective cation, maxi K+ and Clâ^' channels in apical membrane of marginal cells of stria vascularis. Hearing Research, 1992, 61, 86-96.	0.9	64
89	K+-induced swelling of vestibular dark cells is dependent on Na+ and Cl? and inhibited by piretanide. Pflugers Archiv European Journal of Physiology, 1990, 416, 262-269.	1.3	47
90	Membrane potential measurements of transitional cells from the crista ampullaris of the Gerbil. Pflugers Archiv European Journal of Physiology, 1989, 414, 656-662.	1.3	26