
Cheng-you Kan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1124883/publications.pdf Version: 2024-02-01

CHENC-YOU KAN

#	Article	IF	CITATIONS
1	Synthesis and characterization of novel reactive 1,8-naphthalimide-based fluorescent molecules. Materials Letters, 2022, 316, 132041.	2.6	2
2	A paper-based fluorescent and colorimetric portable device with smartphone application for Fe3+ sensing. Journal of Environmental Chemical Engineering, 2022, 10, 107650.	6.7	10
3	Synthesis and application of a novel polyurethane nanoemulsion bearing coumarin derivative as a "turn-on―fluorescence sensor toward Hg2+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121612.	3.9	6
4	Portable quantitative detection of Fe3+ by integrating a smartphone with colorimetric responses of a rhodamine-functionalized polyacrylamide hydrogel chemosensor. Sensors and Actuators B: Chemical, 2021, 340, 129958.	7.8	27
5	Preparation and reducing-responsive property of a novel functional polyurethane nanoemulsion. Chinese Chemical Letters, 2020, 31, 292-294.	9.0	3
6	Thiol functionalized polymer submicron particles prepared by soapâ€free emulsion polymerization and their adsorption of lead ions in water. Journal of Applied Polymer Science, 2020, 137, 49312.	2.6	1
7	Fabrication of fluorescent polymer latexes based on rhodamine B derivatives and their reusable films for Fe3+ detection. Dyes and Pigments, 2020, 182, 108633.	3.7	12
8	Synthesis of a water-soluble copolyacrylamide bearing rhodamine B derivative and its selective detection of Fe3+ in aqueous solution. Materials Today Communications, 2020, 24, 101069.	1.9	5
9	Synthesis and characterization of a novel, reactive, yellow fluorescent organosilicon dye and its polysiloxanes. Journal of Chemical Research, 2019, 43, 461-468.	1.3	1
10	Preparation and Characterization of a Novel Waterborne Lambda-Cyhalothrin/Alkyd Nanoemulsion. Journal of Agricultural and Food Chemistry, 2019, 67, 10587-10594.	5.2	22
11	Microfluidic preparation of thiol-containing monodisperse polymer microspheres and their adsorption of Pb2+ in water. Chemical Engineering Journal, 2019, 375, 122012.	12.7	29
12	Facile synthesis and characterization of covalently colored polyurethane latex based on the chain extension of water-soluble dye monomer. Progress in Organic Coatings, 2019, 129, 140-146.	3.9	7
13	Preparation and characterization of porous cationic poly[styreneâ€ <i>co</i> â€{ <i>N</i> , <i>N</i> â€2â€dimethylaminoethyl methacrylate)] nanoparticles and their adsorption of heavy metal ions in water. Polymer International, 2018, 67, 535-543.	3.1	4
14	Effects of shell composition, dosage and alkali type on the morphology of polymer hollow microspheres. Chinese Journal of Polymer Science (English Edition), 2018, 36, 43-48.	3.8	3
15	Preparation and Characterization of Controlled-Release Avermectin/Castor Oil-Based Polyurethane Nanoemulsions. Journal of Agricultural and Food Chemistry, 2018, 66, 6552-6560.	5.2	67
16	Fabrication and characterization of polysiloxane/polyacrylate composite latexes with balanced water vapor permeability and mechanical properties: effect of silane coupling agent. Journal of Coatings Technology Research, 2018, 15, 165-173.	2.5	13
17	Agglomeration of the poly(butadieneâ€styrene) latex triggered by CO ₂ bubbling and the preparation of poly(methyl methacrylateâ€butadieneâ€styrene) core/shell particles with a wide size distribution. Micro and Nano Letters, 2018, 13, 1486-1490.	1.3	3
18	Controlled self-assembly into diverse stimuli-responsive microstructures: from microspheres to branched cylindrical micelles and vesicles. RSC Advances, 2018, 8, 21613-21620.	3.6	4

CHENG-YOU KAN

#	Article	IF	CITATIONS
19	Fabrication of amino-containing hollow polymer latex and its composite with inorganic nanoparticles. Colloid and Polymer Science, 2017, 295, 679-688.	2.1	8
20	A novel 1,8-naphthalimide green fluorescent dye and its corresponding intrinsically fluorescent polyurethane latexes. Journal of Coatings Technology Research, 2017, 14, 571-582.	2.5	11
21	Photodegradation of Polymer Materials Used for Film Coatings of Controlledâ€Release Fertilizers. Chemical Engineering and Technology, 2017, 40, 1611-1618.	1.5	11
22	Polysiloxane/polyacrylate composite latexes with balanced mechanical property and breathability: Effect of core/shell mass ratio. Journal of Applied Polymer Science, 2017, 134, 45258.	2.6	3
23	Investigation of covalently colored polyurethane latexes based on novel anthraquinone polyurethane chain extenders. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 52-59.	2.2	8
24	Preparation and properties of lambda-cyhalothrin/polyurethane drug-loaded nanoemulsions. RSC Advances, 2017, 7, 52684-52693.	3.6	41
25	Diffusion Performance of Fertilizer Nutrient through Polymer Latex Film. Journal of Agricultural and Food Chemistry, 2017, 65, 10868-10874.	5.2	14
26	Fabrication of polymeric–Laponite composite hollow microspheres via LBL assembly. Chinese Chemical Letters, 2017, 28, 367-371.	9.0	8
27	Tertiary amineâ€containing poly(methyl methacrylate–butadiene–styrene) core/shell nanoparticles with CO 2 â€ŧriggered aggregation behaviour. Micro and Nano Letters, 2017, 12, 633-637.	1.3	1
28	pH-Triggered Drug Release of Monodispersed P(St-co-DMAEMA) Nanoparticles: Effects of Swelling, Polymer Chain Flexibility and Drug-Polymer Interactions. Journal of Nanoscience and Nanotechnology, 2017, 17, 900-907.	0.9	7
29	Preparation and properties of a novel polymerizable amphiphilic anthraquinone derivative and its cationic colored copolymer latexes. RSC Advances, 2016, 6, 37765-37772.	3.6	4
30	Investigation of cationic soapless P(St-co-DMAEMA) latex and its electrostatic adsorption of laponite. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1240-1250.	3.8	7
31	Polysiloxanes with Quaternary Ammonium and Polyether Groups for Silylâ€Terminated Polypropylene Oxide Waterborne Emulsions. Journal of Surfactants and Detergents, 2016, 19, 739-745.	2.1	5
32	Electrostatic-Driven Lamination and Untwisting of \hat{I}^2 -Sheet Assemblies. ACS Nano, 2016, 10, 880-888.	14.6	133
33	Self filmâ€forming and opaque hollow latexes fabricated via seeded emulsion polymerization followed by alkali postâ€treatment. Journal of Applied Polymer Science, 2015, 132, .	2.6	3
34	Synthesis and properties of triethoxysilane-terminated anionic polyurethane and its waterborne dispersions. Journal of Polymer Research, 2015, 22, 1.	2.4	13
35	Preparation of covalently colored polymer latex through miniemulsion polymerization based on a polymerizable dye. Designed Monomers and Polymers, 2015, 18, 611-619.	1.6	6
36	Preparation and Properties of Thermoplastic Expandable Microspheres With P(VDC-AN-MMA) Shell by Suspension Polymerization. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 427-431.	3.4	29

CHENG-YOU KAN

#	Article	IF	CITATIONS
37	Polysiloxanes with Quaternary Ammonium Groups for SPPO Aqueous Emulsions. Journal of Surfactants and Detergents, 2015, 18, 517-522.	2.1	9
38	Fabrication and Characterization of Sulfonateâ€containing Polystyrene/CaCO ₃ Coreâ€shell Nanoparticles. Chinese Journal of Chemistry, 2014, 32, 579-584.	4.9	1
39	Effect of the shell crosslinking level and Core/Shell ratio on the morphology of latex particles in the preparation of hollow latexes. Chinese Journal of Polymer Science (English Edition), 2014, 32, 177-186.	3.8	9
40	A novel approach to prepare core/shell polymer latex particles with high sulphonate contents. Chinese Journal of Polymer Science (English Edition), 2014, 32, 519-523.	3.8	3
41	Preparation of P(St-co-MAA)/CeO2 composite microspheres via surface carboxyl oxidation followed by in situ chemical deposition of CeO2 and their catalytic application on oxidative degradation of methyl orange. RSC Advances, 2014, 4, 29042-29049.	3.6	8
42	Synthesis and characterization of monodispersed P(St-co-DMAEMA) nanoparticles as pH-sensitive drug delivery system. Materials Science and Engineering C, 2014, 45, 1-7.	7.3	40
43	Fabrication and morphology control of hollow polymer particles by altering core particle size. Colloid and Polymer Science, 2014, 292, 2687-2694.	2.1	7
44	Preparation and characterization of cationic pH-sensitive SiO2/polymer core-shell nanoparticles with amino groups in the shell. Colloid and Polymer Science, 2014, 292, 2611-2620.	2.1	4
45	Effect of monomer feeding mode on the preparation of hollow latexes with high MAA content in the core latex preparation. Chinese Journal of Polymer Science (English Edition), 2014, 32, 21-28.	3.8	6
46	Influence of unsaturated acid monomer on the morphology of latex particles in the preparation of hollow latex via the alkali postâ€ŧreatment. Journal of Applied Polymer Science, 2013, 127, 651-658.	2.6	17
47	Preparation and properties of covalently colored polymer latex based on a new anthraquinone monomer. Journal of Applied Polymer Science, 2013, 129, 1484-1490.	2.6	16
48	Preparation of Covalently olored Polymer Latex via Batch Emulsion Polymerization. Chinese Journal of Chemistry, 2012, 30, 2338-2342.	4.9	8
49	Synthesis and characterization of covalently colored polymer latex based on new polymerizable anthraquinone dyes. Colloid and Polymer Science, 2012, 290, 1893-1900.	2.1	20
50	Design and control of soap-free hydrophilic-hydrophobic core-shell latex particles with high carboxyl content in the core of the particles. Chinese Journal of Polymer Science (English Edition), 2012, 30, 595-602.	3.8	7
51	PREPARATION OF PSt/TiO ₂ CORE-SHELL COMPOSITE MICROSPHERES VIA SURFACE MODIFICATION OF PSt SEED LATEX PARTICLES. Acta Polymerica Sinica, 2012, 012, 111-116.	0.0	3
52	INFLUENCES OF pH AND TBT AMOUNT ON THE MORPHOLOGY OF PSt/TiO ₂ CORE-SHELL COMPOSITE MICROSPHERES AND VOID TiO ₂ MICROSPHERES. Acta Polymerica Sinica, 2012, 012, 391-397.	0.0	1
53	Polar Gradient Latex Particles with Hydrophilic Core and Hydrophobic Shell Prepared via Multistep Emulsion Polymerization. Chinese Journal of Chemistry, 2011, 29, 853-856.	4.9	6
54	INFLUENCES OF pH AND AMOUNT OF PRECURSOR ON THE MORPHOLOGY OF PSt/SiO ₂ CORE-SHELL COMPOSITE MICROSPHERES. Acta Polymerica Sinica, 2011, 011, 307-312.	0.0	3

CHENG-YOU KAN

#	Article	IF	CITATIONS
55	Influences of MAA on the porous morphology of P(St–MAA) latex particles produced by batch soap-free emulsion polymerization followed by stepwise alkali/acid post-treatment. Journal of Colloid and Interface Science, 2010, 349, 122-126.	9.4	32
56	Preparation of Bowl‣ike Polymer Particles <i>via</i> Multiâ€Step Emulsion Polymerization and Alkali Postâ€Treatment. Macromolecular Symposia, 2010, 297, 61-64.	0.7	2
57	PSt/SiO ₂ CORE-SHELL COMPOSITE MICROSPHERES PREPARED BY PSt SEED SURFACE MODIFICATION. Acta Polymerica Sinica, 2010, 010, 753-758.	0.0	3
58	Study on soap-free P(MMA-EA-AA or MAA) latex particles with narrow size distribution. Polymers for Advanced Technologies, 2006, 17, 193-198.	3.2	13
59	The immobilization of trypsin on soap-free P(MMA-EA-AA) latex particles. Materials Science and Engineering C, 2006, 26, 664-669.	7.3	39
60	The generation of void morphology inside soap-free P(MMA-EA-MAA) particles prepared by seeded emulsion polymerization. Journal of Colloid and Interface Science, 2006, 297, 505-512.	9.4	14
61	Immobilization of aminoglycosidic aminocyclitols antibiotic onto soap-free poly(MMA-EA-AA) latex particles. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 91-101.	3.5	6
62	Synthesis and properties of soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles prepared by seeded emulsion polymerization. European Polymer Journal, 2005, 41, 439-445.	5.4	50
63	Morphology control of soap-free seeded P(St–EA–AA) latex particles. European Polymer Journal, 2005, 41, 1510-1518.	5.4	17
64	The Properties of Covalently Immobilized Trypsin on Soap-Free P(MMA-EA-AA) Latex Particles. Macromolecular Bioscience, 2005, 5, 344-351.	4.1	40
65	Effects of alkali post-treatment on the particle morphology of soap-free poly(methyl) Tj ETQq1 1 0.784314 rgBT 676-682.	/Overlock 3.2	10 Tf 50 34 8
66	Morphology of P(BA-St-DAAM) latex particles prepared by seeded-emulsion polymerization. Polymers for Advanced Technologies, 2003, 14, 212-215.	3.2	15
67	Catalytic Behavior of Crosslinked Polystyrene Bound Platinum Complex in Hydrosilylation of Olefins. Polymer Journal, 2002, 34, 97-102.	2.7	12
68	Synthesis and characterization of hollow polymer latex particles. Polymers for Advanced Technologies, 1997, 8, 627-630.	3.2	32
69	Graft emulsion copolymerization of acrylates and siloxane. Polymers for Advanced Technologies, 1997, 8, 631-633.	3.2	33
70	Preparation of Styrene - Divinyl Benzene Copolymer-supported Platinum Complexes and their Catalytic Properties in Hydrosilylation. Polymers for Advanced Technologies, 1996, 7, 76-78.	3.2	7
71	Synthesis of Silicone - Acrylate Copolymer Latexes and their Film Properties. Polymers for Advanced Technologies, 1996, 7, 95-97.	3.2	38
72	Preparation of sulphonate-containing polymer particles via semi-continuous emulsion copolymerizaion of styrene and sodium styrene sulphonate. Chinese Journal of Polymer Science (English Edition), 0, , 1.	3.8	0