Jae Hyun Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11244871/publications.pdf

Version: 2024-02-01

516710 377865 36 1,476 16 34 citations g-index h-index papers 39 39 39 2403 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Engineering Tissueâ€Specific, Multiscale Microvasculature with a Capillary Network for Prevascularized Tissue. Small Methods, 2021, 5, e2100632.	8.6	8
2	An Active and Soft Hydrogel Actuator to Stimulate Live Cell Clusters by Self-folding. Polymers, 2020, 12, 583.	4.5	11
3	Tunable 3D Agarose-Well to enhance structural integrity of a reconstructed human skin equivalent. Materials Letters, 2019, 253, 298-301.	2.6	4
4	Tuning the Hydrophobicity of a Hydrogel Using Self-Assembled Domains of Polymer Cross-Linkers. Materials, 2019, 12, 1635.	2.9	10
5	Analysis of Properties of Lipophilic Gel Integrated with Grafted Crosslinker for Absorbing VOCs. Journal of Korean Society for Atmospheric Environment, 2019, 35, 27-35.	1.1	0
6	Chemical and mechanical modulation of polymeric micelle assembly. Nanoscale, 2017, 9, 5194-5204.	5.6	13
7	Top-down synthesis of polyaspartamide morphogens to derive platinum nanoclusters. Materials Letters, 2016, 168, 184-187.	2.6	2
8	Tuning the Hydrophobicity of Agar Hydrogel with Substituent Effect. Porrime, 2016, 40, 321.	0.2	3
9	Glacier Moraine Formationâ€Mimicking Colloidal Particle Assembly in Microchanneled, Bioactive Hydrogel for Guided Vascular Network Construction. Advanced Healthcare Materials, 2015, 4, 195-201.	7.6	13
10	Material-mediated proangiogenic factor release pattern modulates quality of regenerated blood vessels. Journal of Controlled Release, 2014, 196, 363-369.	9.9	13
11	Recapitulating Cell–Cell Adhesion Using N-Cadherin Biologically Tethered to Substrates. Biomacromolecules, 2014, 15, 2172-2179.	5.4	17
12	Hydrogels: In Situ Self-Folding Assembly of a Multi-Walled Hydrogel Tube for Uniaxial Sustained Molecular Release (Adv. Mater. 39/2013). Advanced Materials, 2013, 25, 5522-5522.	21.0	0
13	The spatiotemporal control of erosion and molecular release from micropatterned poly(ethylene) Tj ETQq1 1 0.78	84314 rgB ⁷	「 Qverlock 1 25
14	Tailoring the Dependency between Rigidity and Water Uptake of a Microfabricated Hydrogel with the Conformational Rigidity of a Polymer Cross-Linker. Biomacromolecules, 2013, 14, 1361-1369.	5.4	16
15	Leukocyte-Mimicking Stem Cell Delivery via in Situ Coating of Cells with a Bioactive Hyperbranched Polyglycerol. Journal of the American Chemical Society, 2013, 135, 8770-8773.	13.7	74
16	Stiffness-Modulated Water Retention and Neovascularization of Dermal Fibroblast-Encapsulating Collagen Gel. Tissue Engineering - Part A, 2013, 19, 1275-1284.	3.1	15
17	In Situ Selfâ€Folding Assembly of a Multiâ€Walled Hydrogel Tube for Uniaxial Sustained Molecular Release. Advanced Materials, 2013, 25, 5568-5573.	21.0	52
18	Directed cell growth and alignment on protein-patterned 3D hydrogels with stereolithography. Virtual and Physical Prototyping, 2012, 7, 219-228.	10.4	26

#	Article	IF	Citations
19	3-D biofabrication using stereolithography for biology and medicine. , 2012, 2012, 6805-8.		10
20	Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography. Lab on A Chip, 2012, 12, 88-98.	6.0	155
21	Polyaspartamide vesicle induced by metallic nanoparticles. Soft Matter, 2012, 8, 2237.	2.7	11
22	Ellipsoidal Polyaspartamide Polymersomes with Enhanced Cell†Targeting Ability. Advanced Functional Materials, 2012, 22, 3239-3246.	14.9	34
23	"Living―Microvascular Stamp for Patterning of Functional Neovessels; Orchestrated Control of Matrix Property and Geometry. Advanced Materials, 2012, 24, 58-63.	21.0	62
24	Top-down Synthesis of Versatile Polyaspartamide Linkers for Single-Step Protein Conjugation to Materials. Bioconjugate Chemistry, 2011, 22, 2377-2382.	3.6	16
25	Stereolithographyâ€Based Hydrogel Microenvironments to Examine Cellular Interactions. Advanced Functional Materials, 2011, 21, 3642-3651.	14.9	112
26	Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab on A Chip, 2010, 10, 2062.	6.0	450
27	Tuning responsiveness and structural integrity of a pH responsive hydrogel using a poly(ethylene) Tj ETQq1 1 0.	784314 rg 2.7	BT JOverlock
28	A novel immobilization technique for surface plasmon resonance sensing. , 2006, , .		0
29	A novel immobilization technique using a poly(amino acid) multilayer designed for surface plasmon resonance sensing. Chemical Physics Letters, 2006, 421, 373-377.	2.6	9
30	Binding Evaluation of Targeted Microbubbles with Biotin–Avidin Interaction by Surface Plasmon Resonance Biosensor. Japanese Journal of Applied Physics, 2006, 45, 421-425.	1.5	11
31	Biodegradable poly(asparagine) grafted with poly(caprolactone) and the effect of substitution on self-aggregation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 264, 187-194.	4.7	17
32	Bioadhesive interaction and hypoglycemic effect of insulin-loaded lectin–microparticle conjugates in oral insulin delivery system. Journal of Controlled Release, 2005, 102, 525-538.	9.9	92
33	SURFACE FABRICATION OF BIOTINYLATED POLYPEPTIDE MULTI-LAYER DESIGNED FOR SURFACE PLASMON RESONANCE SENSING. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 525-534.	1.8	8
34	Self-aggregates of hydrophobically modified poly(2-hydroxyethyl aspartamide) in aqueous solution. Colloid and Polymer Science, 2003, 281, 852-861.	2.1	23
35	Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(asparagine) grafted with poly(caprolactone). Polymer, 2003, 44, 583-591.	3.8	80
36	Multiomics characterization of dose- and time-dependent effects of ionizing radiation on human skin keratinocytes. Korean Journal of Chemical Engineering, 0 , 1 .	2.7	2