Ishfaq Ahmad

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11242997/ishfaq-ahmad-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 25 1,424 10 h-index g-index citations papers 26 4.63 13.7 1,779 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
25	Unveiling the critical role of active site interaction in single atom catalyst towards hydrogen evolution catalysis. <i>Nano Energy</i> , 2022 , 93, 106819	17.1	3
24	3D Porous Fused Aromatic Networks for High Performance Gas and Iodine Uptakes (Adv. Mater. Interfaces 22/2021). <i>Advanced Materials Interfaces</i> , 2021 , 8, 2170128	4.6	
23	3D Porous Fused Aromatic Networks for High Performance Gas and Iodine Uptakes. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2101373	4.6	O
22	Fused Aromatic Network Structures: Fused Aromatic Network with Exceptionally High Carrier Mobility (Adv. Mater. 9/2021). <i>Advanced Materials</i> , 2021 , 33, 2170063	24	
21	Recent Progress in Porous Fused Aromatic Networks and Their Applications. <i>Small Science</i> , 2021 , 1, 200	0007	6
20	Fused aromatic networks with the different spatial arrangement of structural units. <i>Cell Reports Physical Science</i> , 2021 , 100502	6.1	0
19	Synthesis of Saddle-Shape Octaaminotetraphenylene Octahydrochloride. <i>Journal of Organic Chemistry</i> , 2021 , 86, 14398-14403	4.2	1
18	Fused Aromatic Network with Exceptionally High Carrier Mobility. Advanced Materials, 2021, 33, e20047	707,	6
17	Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework. <i>Communications Chemistry</i> , 2020 , 3,	6.3	10
16	Iron encased organic networks with enhanced lithium storage properties. <i>Energy Storage</i> , 2020 , 2, e114	2.8	2
15	Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. <i>Nature Communications</i> , 2019 , 10, 4060	17.4	70
14	Identifying the structure of Zn-N active sites and structural activation. <i>Nature Communications</i> , 2019 , 10, 2623	17.4	50
13	Scalable Synthesis of Tetrapodal Octaamine. European Journal of Organic Chemistry, 2019 , 2019, 2335-2	:3338	4
12	Robust fused aromatic pyrazine-based two-dimensional network for stably cocooning iron nanoparticles as an oxygen reduction electrocatalyst. <i>Nano Energy</i> , 2019 , 56, 581-587	17.1	24
11	A Robust 3D Cage-like Ultramicroporous Network Structure with High Gas-Uptake Capacity. Angewandte Chemie, 2018 , 130, 3473-3478	3.6	4
10	A Robust 3D Cage-like Ultramicroporous Network Structure with High Gas-Uptake Capacity. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3415-3420	16.4	34
9	Hydrogen Evolution Reaction: Encapsulating Iridium Nanoparticles Inside a 3D Cage-Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction (Adv. Mater. 52/2018). <i>Advanced Materials</i> , 2018 , 30, 1870401	24	2

LIST OF PUBLICATIONS

8	Encapsulating Iridium Nanoparticles Inside a 3D Cage-Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2018 , 30, e1805606	24	69
7	Hydrogen Evolution Reaction: Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media (Adv. Mater. 44/2018). <i>Advanced Materials</i> , 2018 , 30, 1870330	24	13
6	Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media. <i>Advanced Materials</i> , 2018 , 30, e1803676	24	125
5	An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. <i>Nature Nanotechnology</i> , 2017 , 12, 441-446	28.7	857
4	Electrocatalysis: Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst (Small 40/2017). <i>Small</i> , 2017 , 13,	11	1
3	Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst. <i>Small</i> , 2017 , 13, 1701167	11	59
2	Macroporous Inverse Opal-like MoC with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. <i>ACS Nano</i> , 2017 , 11, 7527-7533	16.7	84
1	Synthesis and Characterization of Functionalized Silver Nanoparticles for Selective Screening of Mercury (II) Ions. <i>Arabian Journal for Science and Engineering</i> ,1	2.5	Ο