Grigory Smolentsev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1124292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Timeâ€Resolved Potentialâ€Induced Changes in Fe/N/Câ€Catalysts Studied by In Situ Modulation Excitation Xâ€Ray Absorption Spectroscopy. Advanced Energy Materials, 2022, 12, .	19.5	33
2	Atomic-Level Description of Thermal Fluctuations in Inorganic Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 3382-3391.	4.6	13
3	Potentialâ€Induced Spin Changes in Fe/N/C Electrocatalysts Assessed by In Situ Xâ€ray Emission Spectroscopy. Angewandte Chemie, 2021, 133, 11813-11818.	2.0	5
4	Potentialâ€Induced Spin Changes in Fe/N/C Electrocatalysts Assessed by In Situ Xâ€ray Emission Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 11707-11712.	13.8	36
5	Quantifying Photoinduced Polaronic Distortions in Inorganic Lead Halide Perovskite Nanocrystals. Journal of the American Chemical Society, 2021, 143, 9048-9059.	13.7	33
6	Enhanced Reducibility of the Ceria–Tin Oxide Solid Solution Modifies the CO Oxidation Mechanism at the Platinum–Oxide Interface. ACS Catalysis, 2021, 11, 9435-9449.	11.2	19
7	Excited-state structure of copper phenanthroline-based photosensitizers. Physical Chemistry Chemical Physics, 2021, 23, 26729-26736.	2.8	6
8	Evidence of Octahedral Co–Mo–S Sites in Hydrodesulfurization Catalysts as Determined by Resonant Inelastic X-ray Scattering and X-ray Absorption Spectroscopy. ACS Catalysis, 2020, 10, 10978-10988.	11.2	19
9	Elucidating the Oxygen Activation Mechanism on Ceria-Supported Copper-Oxo Species Using Time-Resolved X-ray Absorption Spectroscopy. ACS Catalysis, 2020, 10, 4692-4701.	11.2	21
10	Operation of a bending magnet beamline in large energy bandwidth mode for non-resonant X-ray emission spectroscopy. Results in Physics, 2020, 18, 103212.	4.1	4
11	Taking a snapshot of the triplet excited state of an OLED organometallic luminophore using X-rays. Nature Communications, 2020, 11, 2131.	12.8	24
12	Pump—probe XAS investigation of the triplet state of an Ir photosensitizer with chromenopyridinone ligands. Photochemical and Photobiological Sciences, 2018, 17, 896-902.	2.9	13
13	Fluorescence-detected XAS with sub-second time resolution reveals new details about the redox activity of Pt/CeO ₂ catalyst. Journal of Synchrotron Radiation, 2018, 25, 989-997.	2.4	14
14	Shedding Light on the Nature of Photoinduced States Formed in a Hydrogen-Generating Supramolecular RuPt Photocatalyst by Ultrafast Spectroscopy. Journal of Physical Chemistry A, 2018, 122, 6396-6406.	2.5	8
15	Structure of the Co ^I Intermediate of a Cobalt Pentapyridyl Catalyst for Hydrogen Evolution Revealed by Timeâ€Resolved Xâ€ray Spectroscopy. ChemSusChem, 2018, 11, 3087-3091.	6.8	10
16	Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy. Structural Dynamics, 2017, 4, 044002.	2.3	61
17	{Co ₄ O ₄ } and {Co _{<i>x</i>} Ni _{4–<i>x</i>} O ₄ } Cubane Water Oxidation Catalysts as Surface Cut-Outs of Cobalt Oxides. Journal of the American Chemical Society, 2017, 139, 14198-14208.	13.7	94
18	Charge migration and charge transfer in molecular systems. Structural Dynamics, 2017, 4, 061508.	2.3	146

#	Article	IF	CITATIONS
19	Kinetic Studies of the Pt Carbonate-Mediated, Room-Temperature Oxidation of Carbon Monoxide by Oxygen over Pt/Al ₂ O ₃ Using Combined, Time-Resolved XAFS, DRIFTS, and Mass Spectrometry. Journal of the American Chemical Society, 2016, 138, 13930-13940.	13.7	38
20	Microsecond Xâ€ray Absorption Spectroscopy Identification of Co ^I Intermediates in Cobaloximeâ€Catalyzed Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, 15158-15162.	3.3	35
21	Palladium versus Platinum: The Metal in the Catalytic Center of a Molecular Photocatalyst Determines the Mechanism of the Hydrogen Production with Visible Light. Angewandte Chemie - International Edition, 2015, 54, 5044-5048.	13.8	112
22	Optimized Finite Difference Method for the Full-Potential XANES Simulations: Application to Molecular Adsorption Geometries in MOFs and Metal–Ligand Intersystem Crossing Transients. Journal of Chemical Theory and Computation, 2015, 11, 4512-4521.	5.3	179
23	Frontispiece: Palladium versus Platinum: The Metal in the Catalytic Center of a Molecular Photocatalyst Determines the Mechanism of the Hydrogen Production with Visible Light. Angewandte Chemie - International Edition, 2015, 54, .	13.8	0
24	Nanoscale and bio imaging: general discussion. Faraday Discussions, 2014, 171, 419-427.	3.2	0
25	X-ray absorption spectroscopy with time-tagged photon counting: application to study the structure of a Co(i) intermediate of H2 evolving photo-catalyst. Faraday Discussions, 2014, 171, 259-273.	3.2	37
26	Influence of the support on sulfur poisoning and regeneration of Ru catalysts probed by sulfur K-edge X-ray absorption spectroscopy. Catalysis Today, 2014, 229, 56-63.	4.4	12
27	Chemical reaction dynamics II and Correlated systems, surfaces and catalysis: general discussion. Faraday Discussions, 2014, 171, 323-356.	3.2	0
28	Highly Accurate Excited-State Structure of [Os(bpy) ₂ dcbpy] ²⁺ Determined by X-ray Transient Absorption Spectroscopy. Journal of the American Chemical Society, 2014, 136, 8804-8809.	13.7	44
29	Pump-Flow-Probe X-ray Absorption Spectroscopy as a Tool for Studying Intermediate States of Photocatalytic Systems. Journal of Physical Chemistry C, 2013, 117, 17367-17375.	3.1	31
30	Spin-state studies with XES and RIXS: From static to ultrafast. Journal of Electron Spectroscopy and Related Phenomena, 2013, 188, 166-171.	1.7	87
31	High energy resolution core-level X-ray spectroscopy for electronic and structural characterization of osmium compounds. Physical Chemistry Chemical Physics, 2013, 15, 16152.	2.8	33
32	Fine tuning of gold electronic structure by IRMOF post-synthetic modification. RSC Advances, 2013, 3, 12043.	3.6	12
33	Toward Highlighting the Ultrafast Electron Transfer Dynamics at the Optically Dark Sites of Photocatalysts. Journal of Physical Chemistry Letters, 2013, 4, 1972-1976.	4.6	49
34	Energy Dispersive XAFS: Characterization of Electronically Excited States of Copper(I) Complexes. Journal of Physical Chemistry B, 2013, 117, 7381-7387.	2.6	48
35	Visualizing Interfacial Charge Transfer in Ru-Dye-Sensitized TiO ₂ Nanoparticles Using X-ray Transient Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2011, 2, 628-632.	4.6	74
36	Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst. Journal of the American Chemical Society, 2011, 133, 15786-15794.	13.7	50

#	Article	IF	CITATIONS
37	Local atomic structure around Mn ions in GaN:Mn thin films: Quantitative XANES analysis. Physica B: Condensed Matter, 2011, 406, 2843-2846.	2.7	9
38	Influence of Ligand Substitution on Excited State Structural Dynamics in Cu(I) Bisphenanthroline Complexes. Journal of Physical Chemistry B, 2010, 114, 14521-14527.	2.6	66
39	Triplet Excited State Distortions in a Pyrazolate Bridged Platinum Dimer Measured by X-ray Transient Absorption Spectroscopy. Journal of Physical Chemistry A, 2010, 114, 12780-12787.	2.5	72
40	X-ray snapshots for metalloporphyrin axial ligation. Chemical Science, 2010, 1, 642.	7.4	40
41	Hard X-ray photon-in photon-out spectroscopy. Catalysis Today, 2009, 145, 294-299.	4.4	112
42	X-ray Emission Spectroscopy To Study Ligand Valence Orbitals in Mn Coordination Complexes. Journal of the American Chemical Society, 2009, 131, 13161-13167.	13.7	135
43	Cr local environment by valence-to-core X-ray emission spectroscopy. Journal of Analytical Atomic Spectrometry, 2009, 24, 215-223.	3.0	52
44	Three-Dimensional Local Structure of Photoexcited Cu Diimine Complex Refined by Quantitative XANES Analysis. Journal of Physical Chemistry A, 2008, 112, 5363-5367.	2.5	49
45	Xâ€Ray Spectroscopic and Diffraction Study of the Structure of the Active Species in the Ni ^{II} atalyzed Polymerization of Isocyanides. ChemPhysChem, 2007, 8, 1850-1856.	2.1	15
46	Valence-to-Core X-ray Emission Spectroscopy Identification of Carbide Compounds in Nanocrystalline Cr Coatings Deposited from Cr(III) Electrolytes Containing Organic Substances. Journal of Physical Chemistry B, 2006, 110, 23192-23196.	2.6	104
47	Quantitative local structure refinement from XANES: multi-dimensional interpolation approach. Journal of Synchrotron Radiation, 2006, 13, 19-29.	2.4	87
48	Axial Ligation of Fe(II)â^'Bleomycin Probed by XANES Spectroscopy. Inorganic Chemistry, 2004, 43, 1825-1827.	4.0	12
49	Timeâ€Resolved Xâ€Ray Spectroscopy to Study Luminophores with Relevance for OLEDs. ChemPhotoChem, 0, , .	3.0	0