Daniel M Vogt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11242511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Wearable Soft Haptic Communicator Based on Dielectric Elastomer Actuators. Soft Robotics, 2020, 7, 451-461.	8.0	93
2	Robotic Textiles: Smart Thermally Actuating Textiles (Adv. Mater. Technol. 8/2020). Advanced Materials Technologies, 2020, 5, 2070050.	5.8	0
3	Smart Thermally Actuating Textiles. Advanced Materials Technologies, 2020, 5, 2000383.	5.8	35
4	Ultra-gentle soft robotic fingers induce minimal transcriptomic response in a fragile marine animal. Current Biology, 2020, 30, R157-R158.	3.9	9
5	Actuators: Tension Pistons: Amplifying Piston Force Using Fluidâ€Induced Tension in Flexible Materials (Adv. Funct. Mater. 30/2019). Advanced Functional Materials, 2019, 29, 1970208.	14.9	0
6	Ultragentle manipulation of delicate structures using a soft robotic gripper. Science Robotics, 2019, 4, .	17.6	186
7	Tension Pistons: Amplifying Piston Force Using Fluidâ€Induced Tension in Flexible Materials. Advanced Functional Materials, 2019, 29, 1901419.	14.9	21
8	Soft Sensors for Curvature Estimation under Water in a Soft Robotic Fish. , 2019, , .		10
9	Ultrastrong and Highâ€Stroke Wireless Soft Actuators through Liquid–Gas Phase Change. Advanced Materials Technologies, 2019, 4, 1800381.	5.8	36
10	Biocompatible Soft Fluidic Strain and Force Sensors for Wearable Devices. Advanced Functional Materials, 2019, 29, 1807058.	14.9	70
11	Soft Somatosensitive Actuators via Embedded 3D Printing. Advanced Materials, 2018, 30, e1706383.	21.0	398
12	Soft Robotics: Soft Somatosensitive Actuators via Embedded 3D Printing (Adv. Mater. 15/2018). Advanced Materials, 2018, 30, 1870106.	21.0	12
13	A Dexterous, Glove-Based Teleoperable Low-Power Soft Robotic Arm for Delicate Deep-Sea Biological Exploration. Scientific Reports, 2018, 8, 14779.	3.3	98
14	Compact Dielectric Elastomer Linear Actuators. Advanced Functional Materials, 2018, 28, 1804328.	14.9	157
15	Shipboard design and fabrication of custom 3D-printed soft robotic manipulators for the investigation of delicate deep-sea organisms. PLoS ONE, 2018, 13, e0200386.	2.5	58
16	Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model. Soft Robotics, 2017, 4, 202-210.	8.0	82
17	Batch Fabrication of Customizable Siliconeâ€Textile Composite Capacitive Strain Sensors for Human Motion Tracking. Advanced Materials Technologies, 2017, 2, 1700136.	5.8	301
18	Fluid-driven origami-inspired artificial muscles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13132-13137.	7.1	499

DANIEL M VOGT

#	Article	IF	CITATIONS
19	Capacitive Soft Strain Sensors via Multicore–Shell Fiber Printing. Advanced Materials, 2015, 27, 2440-2446.	21.0	372
20	Wrist angle measurements using soft sensors. , 2014, , .		6
21	Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Advanced Materials, 2014, 26, 6307-6312.	21.0	1,314
22	Design and Characterization of a Soft Multi-Axis Force Sensor Using Embedded Microfluidic Channels. IEEE Sensors Journal, 2013, 13, 4056-4064.	4.7	240