Jorge A R Navarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11241550/publications.pdf

Version: 2024-02-01

83 papers

6,385 citations

66234 42 h-index 79 g-index

88 all docs 88 docs citations

88 times ranked 7163 citing authors

#	Article	IF	CITATIONS
1	Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chemical Society Reviews, 2014, 43, 5419-5430.	18.7	838
2	Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature, 2019, 576, 253-256.	13.7	438
3	Textile/Metal–Organicâ€Framework Composites as Selfâ€Detoxifying Filters for Chemicalâ€Warfare Agents. Angewandte Chemie - International Edition, 2015, 54, 6790-6794.	7.2	291
4	Capture of Nerve Agents and Mustard Gas Analogues by Hydrophobic Robust MOF-5 Type Metal–Organic Frameworks. Journal of the American Chemical Society, 2011, 133, 11888-11891.	6.6	270
5	Highly Hydrophobic Isoreticular Porous Metal–Organic Frameworks for the Capture of Harmful Volatile Organic Compounds. Angewandte Chemie - International Edition, 2013, 52, 8290-8294.	7.2	264
6	Cooperative Guest Inclusion by a Zeolite Analogue Coordination Polymer. Sorption Behavior with Gases and Amine and Group 1 Metal Salts. Journal of the American Chemical Society, 2001, 123, 383-387.	6.6	252
7	Ionic Conductivity and Potential Application for Fuel Cell of a Modified Imine-Based Covalent Organic Framework. Journal of the American Chemical Society, 2017, 139, 10079-10086.	6.6	198
8	Tuning the Adsorption Properties of Isoreticular Pyrazolate-Based Metal–Organic Frameworks through Ligand Modification. Journal of the American Chemical Society, 2012, 134, 12830-12843.	6.6	184
9	H2, N2, CO, and CO2Sorption Properties of a Series of Robust Sodalite-Type Microporous Coordination Polymers. Inorganic Chemistry, 2006, 45, 2397-2399.	1.9	158
10	Cationâ€Exchange Porosity Tuning in Anionic Metal–Organic Frameworks for the Selective Separation of Gases and Vapors and for Catalysis. Angewandte Chemie - International Edition, 2010, 49, 7308-7311.	7.2	152
11	Guest-Induced Modification of a Magnetically Active Ultramicroporous, Gismondine-like, Copper(II) Coordination Network. Journal of the American Chemical Society, 2008, 130, 3978-3984.	6.6	149
12	Nanoscaled Zinc Pyrazolate Metal–Organic Frameworks as Drug-Delivery Systems. Inorganic Chemistry, 2016, 55, 2650-2663.	1.9	147
13	Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series. Nature Communications, 2017, 8, 14457.	5.8	133
14	Tetranuclear Coordination Assemblies Based on Half-Sandwich Ruthenium(II) Complexes: Noncovalent Binding to DNA and Cytotoxicity. Inorganic Chemistry, 2009, 48, 7413-7420.	1.9	110
15	Functionalisation of MOF open metal sites with pendant amines for CO2 capture. Journal of Materials Chemistry, 2012, 22, 10155.	6.7	110
16	Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis. Chemical Communications, 2016, 52, 9212-9215.	2.2	109
17	Chemical Warfare Agents Detoxification Properties of Zirconium Metal–Organic Frameworks by Synergistic Incorporation of Nucleophilic and Basic Sites. ACS Applied Materials & Diterfaces, 2017, 9, 23967-23973.	4.0	100
18	First Example of Equatorialâ-'Equatorial Disposition of End-to-End Thiocyanate Bridges in a Polynuclear Copper(II) Complex and Its Relation to the Very Efficient Transmission of the Magnetic Interaction. Inorganic Chemistry, 1997, 36, 4988-4991.	1.9	90

#	Article	IF	CITATIONS
19	cis-[PtCl2(4,7-H-5-methyl-7-oxo[1,2,4]triazolo[1,5-a]pyrimidine)2]:  A Sterically Restrictive New Cisplatin Analogue. Reaction Kinetics with Model Nucleobases, DNA Interaction Studies, Antitumor Activity, and Structureâ^'Activity Relationships. Journal of Medicinal Chemistry, 1998, 41, 332-338.	2.9	86
20	Polymorphic Coordination Networks Responsive to CO ₂ , Moisture, and Thermal Stimuli: Porous Cobalt(II) and Zinc(II) Fluoropyrimidinolates. Chemistry - A European Journal, 2008, 14, 9890-9901.	1.7	84
21	Mineralomimetic Sodalite- and Muscovite-Type Coordination Frameworks. Dynamic Crystal-to-Crystal Interconversion Processes Sensitive to Ion Pair Recognition. Journal of the American Chemical Society, 2004, 126, 3014-3015.	6.6	76
22	Improved CO ₂ Capture from Flue Gas by Basic Sites, Charge Gradients, and Missing Linker Defects on Nickel Face Cubic Centered MOFs. Advanced Functional Materials, 2014, 24, 6130-6135.	7.8	72
23	Chiral Pyrimidine Metallacalixarenes: Synthesis, Structure and Host–Guest Chemistry. Chemistry - A European Journal, 2003, 9, 4414-4421.	1.7	70
24	A Soft Copper(II) Porous Coordination Polymer with Unprecedented Aqua Bridge and Selective Adsorption Properties. Chemistry - A European Journal, 2012, 18, 13117-13125.	1.7	69
25	[(Ethylenediamine)Pt(uracilate)]4, a Metal Analogue of Calix[4]arene. Coordination and Anion Hostâ°Guest Chemistry Related to Its Conformational Dynamics. Inorganic Chemistry, 1999, 38, 426-432.	1.9	66
26	1D-2D-3D Transformation Synthesis of Hierarchical Metal–Organic Framework Adsorbent for Multicomponent Alkane Separation. Journal of the American Chemical Society, 2017, 139, 819-828.	6.6	62
27	Discovery of an Optimal Porous Crystalline Material for the Capture of Chemical Warfare Agents. Chemistry of Materials, 2018, 30, 4571-4579.	3.2	62
28	Study of the biological effects and DNA damage exerted by a new dipalladium-Hmtpo complex on human cancer cells. Journal of Inorganic Biochemistry, 2002, 90, 51-60.	1.5	61
29	Binuclear Platinum(II) Triazolopyrimidine Bridged Complexes. Preparation, Crystal Structure, NMR Spectroscopy, and ab Initio MO Investigation on the Bonding Nature of the Pt(II)···Pt(II) Interaction in the Model Compound {Pt2[NHCHN(C(CH2)(CH3))]4}. Inorganic Chemistry, 1996, 35, 7829-7835.	1.9	60
30	Self-Assembly of Palladium(II) and Platinum(II) Complexes of 2-Hydroxypyrimidine to Novel Metallacalix[4] arenes. Receptor Properties through Multiple H-Bonding Interactions. Inorganic Chemistry, 2000, 39, 2301-2305.	1.9	56
31	A Highly Water-Stable <i>meta</i> -Carborane-Based Copper Metal–Organic Framework for Efficient High-Temperature Butanol Separation. Journal of the American Chemical Society, 2020, 142, 8299-8311.	6.6	54
32	Design and Non-Covalent DNA Binding of Platinum(II) Metallacalix[4]arenes. Chemistry - A European Journal, 2007, 13, 5075-5081.	1.7	53
33	A Recyclable Metal–Organic Framework as a Dual Detector and Adsorbent for Ammonia. Chemistry - A European Journal, 2017, 23, 13602-13606.	1.7	52
34	Study of the incorporation and release of the non-conventional half-sandwich ruthenium(ii) metallodrug RAPTA-C on a robust MOF. Chemical Communications, 2011, 47, 11751.	2,2	51
35	Metal–Organic Frameworks Containing Missingâ€Linker Defects Leading to High Hydroxideâ€lon Conductivity. Chemistry - A European Journal, 2016, 22, 1646-1651.	1.7	48
36	Magnesium Exchanged Zirconium Metal–Organic Frameworks with Improved Detoxification Properties of Nerve Agents. Journal of the American Chemical Society, 2019, 141, 11801-11805.	6.6	48

#	Article	IF	CITATIONS
37	Borderline microporous–ultramicroporous palladium(ii) coordination polymer networks. Effect of pore functionalisation on gas adsorption properties. Journal of Materials Chemistry, 2007, 17, 1939-1946.	6.7	47
38	A palladium metallacalix[4]arene capped with a gadolinium atom. Chemical Communications, 2000, , 235-236.	2.2	45
39	Manganese(II) Pyrimidine-4,6-dicarboxylates: Synthetic, Structural, Magnetic, and Adsorption Insights. Inorganic Chemistry, 2008, 47, 5267-5277.	1.9	45
40	A Flexible Proâ€porous Coordination Polymer: Nonâ€conventional Synthesis and Separation Properties Towards CO ₂ /CH ₄ Mixtures. Chemistry - A European Journal, 2010, 16, 931-937.	1.7	45
41	Molecular architecture of redox-active half-sandwich Ru(ii) cyclic assemblies. Interactions with biomolecules and anticancer activity. CrystEngComm, 2010, 12, 2343.	1.3	45
42	Formation of heterotopic metallacalix[n]arenes (n = 3, 4, 6) containing ethylenediaminepalladium(ii) metal fragments and 4,7-phenanthroline and 2-pyrimidinolate bridges. Synthesis, structure and host–guest chemistry. Dalton Transactions, 2004, , 2780-2785.	1.6	42
43	Influence of anions and crystallisation conditions on the solid-state structure of some binuclear silver(I) complexes supported by triazolopyrimidine bridges. Journal of the Chemical Society Dalton Transactions, 1998, , 901-904.	1.1	39
44	[(Ethylenediamine)Pt(uracilate)]4 – A Metal Analogue of Calix[4]arene: Coordination Chemistry of Its 1,3-Alternate Conformer towards First-Row Transition-Metal Ions. , 2000, 2000, 147-151.		39
45	Rich Structural and Magnetic Chemistry of Cobalt(II) Pyrimidin-2-olate and Pyrimidin-4-olate Complexes. Synthesis, X-ray Powder Diffraction Studies, and Thermal Behavior. Chemistry of Materials, 2003, 15, 2153-2160.	3.2	39
46	Kinetically and Thermodynamically Controlled Formation of Homo- and Heterobinuclear Platinum(II) and Palladium(II) Complexes Supported by Bidentate Triazolopyrimidine Ligands. Inorganic Chemistry, 1997, 36, 3277-3283.	1.9	35
47	Mononucleotide recognition by cyclic trinuclear palladium(ii) complexes containing 4,7-phenanthroline N,N bridges. Dalton Transactions, 2004, , 1563-1566.	1.6	34
48	Rational Design of Noncovalent Diamondoid Microporous Materials for Low-Energy Separation of C ₆ -Hydrocarbons. Journal of the American Chemical Society, 2018, 140, 15031-15037.	6.6	34
49	The Carbonation of Wollastonite: A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration. Minerals (Basel, Switzerland), 2018, 8, 209.	0.8	34
50	Biporous Metal–Organic Framework with Tunable CO ₂ /CH ₄ Separation Performance Facilitated by Intrinsic Flexibility. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36144-36156.	4.0	33
51	Cation Exchange Strategy for the Encapsulation of a Photoactive CO-Releasing Organometallic Molecule into Anionic Porous Frameworks. Inorganic Chemistry, 2016, 55, 6525-6531.	1.9	32
52	Tuning the Structural and Magnetic Properties of Thermally Robust Coordination Polymers. Inorganic Chemistry, 2006, 45, 7612-7620.	1.9	31
53	Multifunctionality in an Ion-Exchanged Porous Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 1365-1376.	6.6	31
54	Selective Oneâ€Pot Twoâ€Step Câ^'C Bond Formation using Metalâ€"Organic Frameworks with Mild Basicity as Heterogeneous Catalysts. ChemCatChem, 2017, 9, 4019-4023.	1.8	30

#	Article	IF	Citations
55	Preparation and structural characterization of a series of ternary palladium(II) binuclear complexes containing triazolopyrimidinate bridges. Journal of the Chemical Society Dalton Transactions, 1997, , 1001-1006.	1.1	29
56	Thermally Induced Interconversions of Metalâ `Pyrimidine-4,6-dicarboxylate Polymers: A Structural, Spectroscopic, and Magnetic Study. Inorganic Chemistry, 2009, 48, 3087-3094.	1.9	27
57	Aluminum Doped MCM-41 Nanoparticles as Platforms for the Dual Encapsulation of a CO-Releasing Molecule and Cisplatin. Inorganic Chemistry, 2017, 56, 10474-10480.	1.9	27
58	From Simpletrans-[a2Pt(2-hydroxypyrimidine)2]2+(a = NH3, CH3NH2) Complexes to Structures of Higher Complexity. Molecular Recognition of 2-Aminopyrimidine by Hydrogen Bond Formation and Reactivity toward Additional Metal Ions. Inorganic Chemistry, 2000, 39, 1059-1065.	1.9	25
59	BioMOF@cellulose fabric composites for bioactive molecule delivery. Journal of Inorganic Biochemistry, 2019, 201, 110818.	1.5	24
60	Variation of Structures of Coordination Polymers of Ca(II), Sr(II), and Ba(II) with a Tripodal Ligand: Synthesis, Structural, and Gas Adsorption Studies. Crystal Growth and Design, 2008, 8, 1554-1558.	1.4	23
61	RAPTA-C incorporation and controlled delivery from MIL-100(Fe) nanoparticles. New Journal of Chemistry, 2016, 40, 5690-5694.	1.4	23
62	Green synthesis of zirconium MOF-808 for simultaneous phosphate recovery and organophosphorus pesticide detoxification in wastewater. Journal of Materials Chemistry A, 2022, 10, 19606-19611.	5.2	23
63	Coordination Frameworks Containing the Pyrimidin-4-olate Ligand. Synthesis, Thermal, Magnetic, and ab Initio XRPD Structural Characterization of Nickel and Zinc Derivatives. Inorganic Chemistry, 2004, 43, 473-481.	1.9	22
64	The dynamic art of growing COF crystals. Science, 2018, 361, 35-35.	6.0	22
65	Catalytically Active Imine-based Covalent Organic Frameworks for Detoxification of Nerve Agent Simulants in Aqueous Media. Materials, 2019, 12, 1974.	1.3	20
66	Layer-by-Layer Integration of Zirconium Metal–Organic Frameworks onto Activated Carbon Spheres and Fabrics with Model Nerve Agent Detoxification Properties. ACS Applied Materials & Diterfaces, 2021, 13, 50491-50496.	4.0	20
67	Electrochemically and photochemically active Palladium(ii) heterotopic metallacalix[3]arenes. Chemical Communications, 2008, , 3735.	2.2	19
68	Mixed-Metal Cerium/Zirconium MOFs with Improved Nerve Agent Detoxification Properties. Inorganic Chemistry, 2020, 59, 16160-16167.	1.9	19
69	HKUST-1 Metal–Organic Framework Nanoparticle/Graphene Oxide Nanocomposite Aerogels for CO ₂ and CH ₄ Adsorption and Separation. ACS Applied Nano Materials, 2021, 4, 12712-12725.	2.4	19
70	Heteroleptic pyrimidine-2-olate and 4,4′-bipyridine copper(ii) layered metal–organic frameworks with swelling properties. Dalton Transactions, 2005, , 1743-1746.	1.6	16
71	Structural and Magnetic Properties of Layered Copper(II) Coordination Polymers Intercalating s and f Metal Ions. Inorganic Chemistry, 2007, 46, 2988-2997.	1.9	16
72	Structure, Spectroscopic Properties, and Reversible Solid-to-Solid Reactions of Metal Complexes of 5-Nitro-pyrimidin-2-olate. Inorganic Chemistry, 2005, 44, 1472-1481.	1.9	14

#	Article	IF	CITATIONS
73	Metal–organic frameworks for the removal of the emerging contaminant atenolol under real conditions. Dalton Transactions, 2021, 50, 2493-2500.	1.6	11
74	Impact of Pore Size and Defects on the Selective Adsorption of Acetylene in Alkyneâ€Functionalized Nickel(II)â€Pyrazolateâ€Based MOFs. Chemistry - A European Journal, 2021, 27, 11837-11844.	1.7	10
75	Cyclic tetranuclear half-sandwich ruthenium(II) complexes with 4,7-phenanthroline and hydroxo bridges: Crystal structure, solution behaviour and binding to nucleosides. Journal of Inorganic Biochemistry, 2008, 102, 1025-1032.	1.5	9
76	A highly porous interpenetrated MOF-5-type network based on bipyrazolate linkers. CrystEngComm, 2013, 15, 9352.	1.3	9
77	Biomimetic 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Ethylene Production by MIL-100(Fe)-Based Materials. ACS Applied Materials & Ethylene Production by MIL-100(Fe)-Based Materials. ACS Applied Materials & Ethylene Production by MIL-100(Fe)-Based Materials.	4.0	9
78	Zirconium Metal–Organic Polyhedra with Dual Behavior for Organophosphate Poisoning Treatment. ACS Applied Materials & Discourse (2022, 14, 26501-26506).	4.0	9
79	Efficient hexane isomers separation in isoreticular bipyrazolate metal-organic frameworks: The role of pore functionalization. Nano Research, 2021, 14, 532-540.	5.8	8
80	Impact of Defects on Pyrazolate Based Metal Organic Frameworks. Israel Journal of Chemistry, 2018, 58, 1112-1118.	1.0	4
81	Diffusion Control in Single-Site Zinc Reticular Amination Catalysts. Inorganic Chemistry, 2020, 59, 18168-18173.	1.9	2
82	Preparation and Characterization of Solid Co(II) Pyrimidinolates in a Multifaceted Undergraduate Laboratory Experiment. Journal of Chemical Education, 2008, 85, 422.	1.1	1
83	Platinum Group Metal-Organic Frameworks. , 0, , 203-230.		O