
Barrie Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1124132/publications.pdf Version: 2024-02-01

RAPPLE LOHNSON

#	Article	IF	CITATIONS
1	Oral <scp>RNAi</scp> toxicity assay suggests <i>clathrin heavy chain</i> as a promising molecular target for controlling the <scp>28</scp> â€spotted potato ladybird, <i>Henosepilachna vigintioctopunctata</i> . Pest Management Science, 2022, 78, 3871-3879.	3.4	17
2	Microbe-Assisted Alleviation of Heavy Metal Toxicity in Plants: A Review. Geomicrobiology Journal, 2022, 39, 416-425.	2.0	3
3	Selective hydrogenation catalyst made via heat-processing of biogenic Pd nanoparticles and novel â€~̃green' catalyst for Heck coupling using waste sulfidogenic bacteria. Applied Catalysis B: Environmental, 2022, 306, 121059.	20.2	7
4	RNAi suppression of the nuclear receptor FTZ-F1 impaired ecdysis, pupation, and reproduction in the 28-spotted potato ladybeetle, Henosepilachna vigintioctopunctata. Pesticide Biochemistry and Physiology, 2022, 182, 105029.	3.6	7
5	Tyrosine hydroxylase involved in cuticle tanning and reproduction in the 28â€spotted potato ladybeetle, <scp><i>Henosepilachna vigintioctopunctata</i></scp> . Pest Management Science, 2022, 78, 3859-3870.	3.4	5
6	Draft Genome Sequence of the Novel, Moderately Thermophilic, Iron- and Sulfur-Oxidizing Firmicute Strain Y002, Isolated from an Extremely Acidic Geothermal Environment. Microbiology Resource Announcements, 2022, , e0014922.	0.6	1
7	Draft Genome Sequence of <i>Firmicutes</i> Strain S ⁰ AB, a Heterotrophic Iron/Sulfur-Oxidizing Extreme Acidophile. Microbiology Resource Announcements, 2022, 11, .	0.6	2
8	Dissolution of Manganese (IV) Oxide Mediated by Acidophilic Bacteria, and Demonstration That Manganese (IV) Can Act as Both a Direct and Indirect Electron Acceptor for Iron-Reducing <i>Acidithiobacillus</i> spp Geomicrobiology Journal, 2021, 38, 570-576.	2.0	6
9	Design and Operation of Empirical Manganese-Removing Bioreactors and Integration into a Composite Modular System for Remediating and Recovering Metals from Acidic Mine Waters. Applied Sciences (Switzerland), 2021, 11, 4287.	2.5	4
10	Genomic evolution of the class <i>Acidithiobacillia</i> : deep-branching Proteobacteria living in extreme acidic conditions. ISME Journal, 2021, 15, 3221-3238.	9.8	31
11	Bioleaching of Transition Metals From Limonitic Laterite Deposits and Reassessment of the Multiple Roles of Sulfur-Oxidizing Acidophiles in the Process. Frontiers in Microbiology, 2021, 12, 703177.	3.5	7
12	Evolution of Type IV CRISPR-Cas Systems: Insights from CRISPR Loci in Integrative Conjugative Elements of <i>Acidithiobacillia</i> . CRISPR Journal, 2021, 4, 656-672.	2.9	21
13	Chromium (VI) Inhibition of Low pH Bioleaching of Limonitic Nickel-Cobalt Ore. Frontiers in Microbiology, 2021, 12, 802991.	3.5	4
14	Isolation and characterization of a novel acidophilic zero-valent sulfur- and ferric iron-respiring Firmicute. Research in Microbiology, 2020, 171, 215-221.	2.1	4
15	Bioleaching of arsenic-rich cobalt mineral resources, and evidence for concurrent biomineralisation of scorodite during oxidative bio-processing of skutterudite. Hydrometallurgy, 2020, 195, 105395.	4.3	13
16	Characteristics of an Iron-Reducing, Moderately Acidophilic Actinobacterium Isolated from Pyritic Mine Waste, and Its Potential Role in Mitigating Mineral Dissolution in Mineral Tailings Deposits. Microorganisms, 2020, 8, 990.	3.6	4
17	A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans. Frontiers in Microbiology, 2020, 11, 610836.	3.5	25
18	Sulfur-enhanced reductive bioprocessing of cobalt-bearing materials for base metals recovery. Hydrometallurgy, 2020, 195, 105396.	4.3	13

#	Article	IF	CITATIONS
19	Bacterial and Archaeal Diversity in Sulfide-Bearing Waste Rock at Faro Mine Complex, Yukon Territory, Canada. Geomicrobiology Journal, 2020, 37, 511-519.	2.0	15
20	Acidithiobacillus ferrianus sp. nov.: an ancestral extremely acidophilic and facultatively anaerobic chemolithoautotroph. Extremophiles, 2020, 24, 329-337.	2.3	35
21	Genome-based classification of Acidihalobacter prosperus F5 (=DSM 105917=JCM 32255) as Acidihalobacter yilgarnensis sp. nov International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 6226-6234.	1.7	13
22	Acidophile Microbiology in Space and Time. Current Issues in Molecular Biology, 2020, 39, 63-76.	2.4	23
23	Dissimilatory reduction of sulfate and zero-valent sulfur at low pH and its significance for bioremediation and metal recovery. Advances in Microbial Physiology, 2019, 75, 205-231.	2.4	20
24	Microbial generation of sulfuric acid from granular elemental sulfur in laboratory-scale bioreactors. Hydrometallurgy, 2019, 190, 105152.	4.3	14
25	Acidithiobacillus ferrooxidans. Trends in Microbiology, 2019, 27, 282-283.	7.7	56
26	Extremophiles and Acidic Environments. , 2019, , .		4
27	Acidithiobacillus sulfuriphilus sp. nov.: an extremely acidophilic sulfur-oxidizing chemolithotroph isolated from a neutral pH environment. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 2907-2913.	1.7	21
28	Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Current Opinion in Microbiology, 2018, 43, 139-147.	5.1	106
29	Salt Stress-Induced Loss of Iron Oxidoreduction Activities and Reacquisition of That Phenotype Depend on <i>rus</i> Operon Transcription in Acidithiobacillus ferridurans. Applied and Environmental Microbiology, 2018, 84, .	3.1	11
30	Growth of Leptospirillum ferriphilum in sulfur medium in co-culture with Acidithiobacillus caldus. Extremophiles, 2018, 22, 327-333.	2.3	20
31	The Evolution, Current Status, and Future Prospects of Using Biotechnologies in the Mineral Extraction and Metal Recovery Sectors. Minerals (Basel, Switzerland), 2018, 8, 343.	2.0	76
32	Design and Application of a Low pH Upflow Biofilm Sulfidogenic Bioreactor for Recovering Transition Metals From Synthetic Waste Water at a Brazilian Copper Mine. Frontiers in Microbiology, 2018, 9, 2051.	3.5	27
33	Identification of trehalose as a compatible solute in different species of acidophilic bacteria. Journal of Microbiology, 2018, 56, 727-733.	2.8	22
34	Bio-processing of a saline, calcareous copper sulfide ore by sequential leaching. Hydrometallurgy, 2018, 179, 36-43.	4.3	14
35	Implementation of biological and chemical techniques to recover metals from copper-rich leach solutions. Hydrometallurgy, 2018, 179, 274-281.	4.3	20
36	The significance of pH in dictating the relative toxicities of chloride and copper to acidophilic bacteria. Research in Microbiology, 2018, 169, 552-557.	2.1	28

#	Article	IF	CITATIONS
37	Biosynthesis of zinc sulfide quantum dots using waste off-gas from a metal bioremediation process. RSC Advances, 2017, 7, 21484-21491.	3.6	22
38	Biologically-induced precipitation of aluminium in synthetic acid mine water. Minerals Engineering, 2017, 106, 79-85.	4.3	23
39	Reductive bioprocessing of cobalt-bearing limonitic laterites. Minerals Engineering, 2017, 106, 86-90.	4.3	31
40	The effects of temperature and pH on the kinetics of an acidophilic sulfidogenic bioreactor and indigenous microbial communities. Hydrometallurgy, 2017, 168, 116-120.	4.3	44
41	New approaches for extracting and recovering metals from mine tailings. Minerals Engineering, 2017, 106, 71-78.	4.3	206
42	Indirect oxidative bioleaching of a polymetallic black schist sulfide ore. Minerals Engineering, 2017, 106, 102-107.	4.3	26
43	Molecular Systematics of the Genus Acidithiobacillus: Insights into the Phylogenetic Structure and Diversification of the Taxon. Frontiers in Microbiology, 2017, 8, 30.	3.5	77
44	Indirect Redox Transformations of Iron, Copper, and Chromium Catalyzed by Extremely Acidophilic Bacteria. Frontiers in Microbiology, 2017, 8, 211.	3.5	39
45	Comparative Genome Analysis Provides Insights into Both the Lifestyle of Acidithiobacillus ferrivorans Strain CF27 and the Chimeric Nature of the Iron-Oxidizing Acidithiobacilli Genomes. Frontiers in Microbiology, 2017, 8, 1009.	3.5	8
46	Draft genome sequence of the type strain of the sulfur-oxidizing acidophile, Acidithiobacillus albertensis (DSM 14366). Standards in Genomic Sciences, 2017, 12, 77.	1.5	17
47	Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria. FEMS Microbiology Letters, 2016, 363, fnw083.	1.8	78
48	Isolation and characterisation of mineral-oxidising "Acidibacillus―spp. from mine sites and geothermal environments in different global locations. Research in Microbiology, 2016, 167, 613-623.	2.1	32
49	A case in support of implementing innovative bio-processes in the metal mining industry. FEMS Microbiology Letters, 2016, 363, fnw106.	1.8	23
50	Iron Kinetics and Evolution of Microbial Populations in Low-pH, Ferrous Iron-Oxidizing Bioreactors. Environmental Science & Technology, 2016, 50, 8239-8245.	10.0	13
51	Detection, identification and typing of Acidithiobacillus species and strains: a review. Research in Microbiology, 2016, 167, 555-567.	2.1	24
52	Acidithiobacillus ferriphilus sp. nov., a facultatively anaerobic iron- and sulfur-metabolizing extreme acidophile. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 206-211.	1.7	89
53	Biosynthesis of Zinc Sulfide Quantum Dots Using Waste Off-Gas from Metal Bioremediation Process. Advanced Materials Research, 2015, 1130, 555-559.	0.3	0
54	Combined Recovery of Copper and Mitigation of Pollution Potential of a Synthetic Metal-Rich Stream Draining a Copper Mine in Brazil. Advanced Materials Research, 2015, 1130, 606-609.	0.3	2

#	Article	IF	CITATIONS
55	Genome Sequence of the Acidophilic Ferrous Iron-Oxidizing Isolate Acidithrix ferrooxidans Strain Py-F3, the Proposed Type Strain of the Novel Actinobacterial Genus Acidithrix. Genome Announcements, 2015, 3, .	0.8	6
56	Acidithrix ferrooxidans gen. nov., sp. nov.; a filamentous and obligately heterotrophic, acidophilic member of the Actinobacteria that catalyzes dissimilatory oxido-reduction of iron. Research in Microbiology, 2015, 166, 111-120.	2.1	59
57	Biomining goes underground. Nature Geoscience, 2015, 8, 165-166.	12.9	39
58	Genome Sequence of the Moderately Acidophilic Sulfate-Reducing Firmicute Desulfosporosinus acididurans (Strain M1 T). Genome Announcements, 2015, 3, .	0.8	8
59	Biomining in reverse gear: Using bacteria to extract metals from oxidised ores. Minerals Engineering, 2015, 75, 2-5.	4.3	69
60	Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments. Extremophiles, 2015, 19, 39-47.	2.3	128
61	Multi Locus Sequence Typing scheme for Acidithiobacillus caldus strain evaluation and differentiation. Research in Microbiology, 2014, 165, 735-742.	2.1	11
62	Recent Developments in Microbiological Approaches for Securing Mine Wastes and for Recovering Metals from Mine Waters. Minerals (Basel, Switzerland), 2014, 4, 279-292.	2.0	48
63	Biomining—biotechnologies for extracting and recovering metals from ores and waste materials. Current Opinion in Biotechnology, 2014, 30, 24-31.	6.6	362
64	Acidibacter ferrireducens gen. nov., sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles, 2014, 18, 1067-1073.	2.3	92
65	Insights into the pathways of iron- and sulfur-oxidation, and biofilm formation from the chemolithotrophic acidophile Acidithiobacillus ferrivorans CF27. Research in Microbiology, 2014, 165, 753-760.	2.1	38
66	Microorganisms in subterranean acidic waters within Europe's deepest metal mine. Research in Microbiology, 2014, 165, 705-712.	2.1	23
67	Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution. Applied Microbiology and Biotechnology, 2014, 98, 6297-305.	3.6	21
68	Remediation and Selective Recovery of Metals from Acidic Mine Waters Using Novel Modular Bioreactors. Environmental Science & Technology, 2014, 48, 12206-12212.	10.0	101
69	Uncovering a Microbial Enigma: Isolation and Characterization of the Streamer-Generating, Iron-Oxidizing, Acidophilic Bacterium "Ferrovum myxofaciens― Applied and Environmental Microbiology, 2014, 80, 672-680.	3.1	137
70	Removal of sulfate from extremely acidic mine waters using low pH sulfidogenic bioreactors. Hydrometallurgy, 2014, 150, 222-226.	4.3	57
71	Draft Genome Sequence of the Nominated Type Strain of " <i>Ferrovum myxofaciens</i> ,―an Acidophilic, Iron-Oxidizing Betaproteobacterium. Genome Announcements, 2014, 2, .	0.8	24
72	Acidocella aromatica sp. nov.: an acidophilic heterotrophic alphaproteobacterium with unusual phenotypic traits. Extremophiles, 2013, 17, 841-850.	2.3	48

#	Article	IF	CITATIONS
73	Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria. FEMS Microbiology Letters, 2013, 349, n/a-n/a.	1.8	64
74	Anaerobic Sulfur Metabolism Coupled to Dissimilatory Iron Reduction in the Extremophile Acidithiobacillus ferrooxidans. Applied and Environmental Microbiology, 2013, 79, 2172-2181.	3.1	135
75	Genome Analysis of the Psychrotolerant Acidophile <i>Acidithiobacillus ferrivorans </i> CF27. Advanced Materials Research, 2013, 825, 145-148.	0.3	4
76	Development and application of biotechnologies in the metal mining industry. Environmental Science and Pollution Research, 2013, 20, 7768-7776.	5.3	67
77	Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophic gammaproteobacterium. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 4018-4025.	1.7	110
78	A New Direction for Biomining: Extraction of Metals by Reductive Dissolution of Oxidized Ores. Minerals (Basel, Switzerland), 2013, 3, 49-58.	2.0	55
79	Microbial Diversity in Acidic Anaerobic Sediments at the Geothermal Caviahue-Copahue System, Argentina. Advanced Materials Research, 2013, 825, 7-10.	0.3	5
80	Evolution of Microbial "Streamer―Growths in an Acidic, Metal-Contaminated Stream Draining an Abandoned Underground Copper Mine. Life, 2013, 3, 189-210.	2.4	71
81	Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles. Frontiers in Microbiology, 2012, 3, 325.	3.5	61
82	Reductive dissolution of minerals and selective recovery of metals using acidophilic iron- and sulfate-reducing acidophiles. Hydrometallurgy, 2012, 127-128, 172-177.	4.3	31
83	A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters. Bioresource Technology, 2012, 106, 44-49.	9.6	62
84	Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria. Microbial Biotechnology, 2012, 5, 34-44.	4.2	138
85	Effects of prokaryotic diversity changes on hydrocarbon degradation rates and metal partitioning during bioremediation of contaminated anoxic marine sediments. Marine Pollution Bulletin, 2012, 64, 1688-1698.	5.0	40
86	Biodiversity, metabolism and applications of acidophilic sulfurâ€metabolizing microorganisms. Environmental Microbiology, 2012, 14, 2620-2631.	3.8	167
87	Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects. Frontiers in Microbiology, 2012, 3, 96.	3.5	317
88	Microbiology and Geochemistry of Mine Tailings Amended with Organic Carbon for Passive Treatment of Pore Water. Geomicrobiology Journal, 2011, 28, 229-241.	2.0	44
89	The iron-oxidizing proteobacteria. Microbiology (United Kingdom), 2011, 157, 1551-1564.	1.8	495
			_

Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. Microbiology (United) Tj ETQq0 0 0 rgBT (Qaverlock 1003Tf 50 57

#	Article	IF	CITATIONS
91	Significance of Microbial Communities and Interactions in Safeguarding Reactive Mine Tailings by Ecological Engineering. Applied and Environmental Microbiology, 2011, 77, 8201-8208.	3.1	36
92	Biodiversity and geochemistry of an extremely acidic, lowâ€ŧemperature subterranean environment sustained by chemolithotrophy. Environmental Microbiology, 2011, 13, 2092-2104.	3.8	106
93	Reductive dissolution of ferric iron minerals: A new approach for bio-processing nickel laterites. Minerals Engineering, 2011, 24, 620-624.	4.3	126
94	Ferredox: A biohydrometallurgical processing concept for limonitic nickel laterites. Hydrometallurgy, 2011, 109, 221-229.	4.3	79
95	Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae. Extremophiles, 2011, 15, 271-279.	2.3	108
96	Characteristics of a phylogenetically ambiguous, arsenic-oxidizing Thiomonas sp., Thiomonas arsenitoxydans strain 3AsT sp. nov. Archives of Microbiology, 2011, 193, 439-449.	2.2	38
97	A rapid ATP-based method for determining active microbial populations in mineral leach liquors. Hydrometallurgy, 2011, 108, 195-198.	4.3	13
98	Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles, 2010, 14, 9-19.	2.3	209
99	Production of Glycolic Acid by Chemolithotrophic Iron- and Sulfur-Oxidizing Bacteria and Its Role in Delineating and Sustaining Acidophilic Sulfide Mineral-Oxidizing Consortia. Applied and Environmental Microbiology, 2010, 76, 461-467.	3.1	89
100	Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1082-1089.	1.7	184
101	Iron and carbon metabolism by a mineral-oxidizing Alicyclobacillus-like bacterium. Archives of Microbiology, 2008, 189, 305-312.	2.2	34
102	Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations. Extremophiles, 2008, 12, 789-798.	2.3	90
103	"Bioshroudingâ€â€"a novel approach for securing reactive mineral tailings. Biotechnology Letters, 2008, 30, 445-449.	2.2	14
104	Microbiological and geochemical dynamics in simulatedâ€heap leaching of a polymetallic sulfide ore. Biotechnology and Bioengineering, 2008, 101, 739-750.	3.3	92
105	Characterisation of an attenuation system for the remediation of Mn(II) contaminated waters. Hydrometallurgy, 2008, 94, 100-104.	4.3	44
106	Effect of temperature on the bioleaching of chalcopyrite concentrates containing different concentrations of silver. Hydrometallurgy, 2008, 94, 42-47.	4.3	31
107	Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors. Systematic and Applied Microbiology, 2008, 31, 68-77.	2.8	54
108	Carbon, Iron and Sulfur Metabolism in Acidophilic Micro-Organisms. Advances in Microbial Physiology, 2008, 54, 201-255.	2.4	155

#	Article	IF	CITATIONS
109	Development of a Novel Biological System for Removing Manganese from Contaminated Waters. Advanced Materials Research, 2007, 20-21, 267-270.	0.3	1
110	The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology (United Kingdom), 2007, 153, 315-324.	1.8	385
111	Techniques for Detecting and Identifying Acidophilic Mineral-Oxidizing Microorganisms. , 2007, , 237-261.		75
112	Attachment of acidophilic bacteria to solid surfaces: The significance of species and strain variations. Hydrometallurgy, 2007, 85, 72-80.	4.3	90
113	Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environmental Microbiology, 2007, 9, 298-307.	3.8	102
114	Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environmental Microbiology, 2007, 9, 1761-1771.	3.8	182
115	Macroscopic Streamer Growths in Acidic, Metal-Rich Mine Waters in North Wales Consist of Novel and Remarkably Simple Bacterial Communities. Applied and Environmental Microbiology, 2006, 72, 2022-2030.	3.1	200
116	Mobilisation of metals in mineral tailings at the abandoned São Domingos copper mine (Portugal) by indigenous acidophilic bacteria. Hydrometallurgy, 2006, 83, 184-194.	4.3	42
117	Biohydrometallurgy and the environment: Intimate and important interplay. Hydrometallurgy, 2006, 83, 153-166.	4.3	50
118	Sulfidogenesis in Low pH (3.8–4.2) Media by a Mixed Population of Acidophilic Bacteria. Biodegradation, 2006, 17, 57-65.	3.0	132
119	Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov Antonie Van Leeuwenhoek, 2006, 89, 99-108.	1.7	97
120	Isolation and characterization of Acidicaldus organivorus, gen. nov., sp. nov.: a novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic Proteobacterium. Archives of Microbiology, 2006, 185, 212-221.	2.2	61
121	Acid mine drainage remediation options: a review. Science of the Total Environment, 2005, 338, 3-14.	8.0	1,646
122	Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Science of the Total Environment, 2005, 338, 53-66.	8.0	123
123	Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Science of the Total Environment, 2005, 338, 81-93.	8.0	105
124	Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors. Science of the Total Environment, 2005, 338, 115-124.	8.0	130
125	Differentiation and identification of iron-oxidizing acidophilic bacteria using cultivation techniques and amplified ribosomal DNA restriction enzyme analysis. Journal of Microbiological Methods, 2005, 60, 299-313.	1.6	47
126	Geochemistry and microbiology of an impounded subterranean acidic water body at Mynydd Parys, Anglesey, Wales. Geobiology, 2004, 2, 77-86.	2.4	35

#	ARTICLE	IF	CITATIONS
127	Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: Significance of microbial interactions. Biotechnology and Bioengineering, 2004, 87, 574-583.	3.3	132
128	Title is missing!. Water, Air and Soil Pollution, 2003, 3, 47-66.	0.8	238
129	Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Archives of Microbiology, 2003, 180, 60-68.	2.2	103
130	Enumeration and Characterization of Acidophilic Microorganisms Isolated from a Pilot Plant Stirred-Tank Bioleaching Operation. Applied and Environmental Microbiology, 2003, 69, 1936-1943.	3.1	288
131	The microbiology of acidic mine waters. Research in Microbiology, 2003, 154, 466-473.	2.1	486
132	Toxicity of flotation reagents to moderately thermophilic bioleaching microorganisms. Biotechnology Letters, 2002, 24, 2011-2016.	2.2	53
133	Pitfalls of passive mine water treatment. Reviews in Environmental Science and Biotechnology, 2002, 1, 335-343.	8.1	86
134	Biodiversity of acidophilic prokaryotes. Advances in Applied Microbiology, 2001, 49, 37-84.	2.4	210
135	Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environmental Microbiology, 2001, 3, 630-637.	3.8	157
136	Remediation of acidic waste waters using immobilised, acidophilic sulfate-reducing bacteria. Journal of Chemical Technology and Biotechnology, 2001, 76, 836-843.	3.2	129
137	Biodiversity of Acidophilic Moderate Thermophiles Isolated from Two Sites in Yellowstone National Park and Their Roles in the Dissimilatory Oxido-Reduction of Iron. , 2001, , 23-39.		12
138	A microbiological survey of Montserrat Island hydrothermal biotopes. Extremophiles, 2000, 4, 305-313.	2.3	47
139	Leaching of Pyrite by Acidophilic Heterotrophic Iron-Oxidizing Bacteria in Pure and Mixed Cultures. Applied and Environmental Microbiology, 1999, 65, 585-590.	3.1	108
140	Reduction of Soluble Iron and Reductive Dissolution of Ferric Iron-Containing Minerals by Moderately Thermophilic Iron-Oxidizing Bacteria. Applied and Environmental Microbiology, 1998, 64, 2181-2186.	3.1	168
141	Heterotrophic Acidophiles and Their Roles in the Bioleaching of Sulfide Minerals. , 1997, , 259-279.		51
142	Comparative studies of bacterial biofilms on steel surfaces using atomic force microscopy and environmental scanning electron microscopy. Biofouling, 1996, 10, 65-77.	2.2	68
143	Seasonal variations in the microbiology and chemistry if an acid mine drainage stream. Science of the Total Environment, 1993, 132, 27-41.	8.0	30
144	Oxidation and Reduction of Iron by Acidophilic Bacteria. Geomicrobiology Journal, 1992, 10, 153-171.	2.0	99

#	Article	IF	CITATIONS
145	Grazing of acidophilic bacteria by a flagellated protozoan. Microbial Ecology, 1992, 23, 75-86.	2.8	17
146	Diversity of Microbial life in Highly Acidic, Mesophilic Environments. Developments in Geochemistry, 1991, , 225-238.	0.1	11
147	Physiological diversity amongst some moderately thermophilic iron-oxidising bacteria. FEMS Microbiology Ecology, 1991, 8, 327-333.	2.7	2
148	Physiological diversity amongst some moderately thermophilic iron-oxidising bacteria. FEMS Microbiology Letters, 1991, 85, 327-334.	1.8	39
149	Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria. Applied and Environmental Microbiology, 1991, 57, 207-211.	3.1	140
150	Microbial Diversity and Genetic Response to Stress Conditions of Extremophilic Bacteria Isolated from the Escondida Copper Mine. Advanced Materials Research, 0, 71-73, 55-58.	0.3	20
151	Physiological and Phylogenetic Heterogeneity among Iron-Oxidizing <i>Acidithiobacillus</i> spp., and Characteristics of the Novel Species <i>Acidithiobacillus Ferrivorans</i> . Advanced Materials Research, 0, 71-73, 167-170.	0.3	6
152	Sulfidogenesis at Low pH by Acidophilic Bacteria and its Potential for the Selective Recovery of Transition Metals from Mine Waters. Advanced Materials Research, 0, 71-73, 693-696.	0.3	20
153	Microbiological Communities in Two Acidic Mine Pit Lakes in the Iberian Pyrite Belt (IPB), Spain. Advanced Materials Research, 0, 825, 19-22.	0.3	4
154	Selective Metal Removal from Scandinavian Mine Waters Using Novel Biomineralization Technologies. Advanced Materials Research, 0, 825, 479-482.	0.3	4
155	Reduction and Complexation of Copper in a Novel Bioreduction System Developed to Recover Base Metals from Mine Process Waters. Advanced Materials Research, 0, 825, 483-486.	0.3	3
156	The Microbiology of Extremely Acidic Environments. , 0, , 4.3.1-1-4.3.1-24.		11
157	Microbial Communities in Sediments in Acidic, Metal-Rich Mine Lakes: Results from a Study in South-West Spain. Advanced Materials Research, 0, 1130, 7-10.	0.3	5
158	New Insights into Salt-Tolerance in Acidophilic Iron-Oxidising Bacteria. Advanced Materials Research, 0, 1130, 3-6.	0.3	3
159	Characteristics of <i>Acidibacillus</i> Spp.: A Novel Genus of Acidophilic Iron-Oxidising <i>Firmicutes</i> . Advanced Materials Research, 0, 1130, 36-39.	0.3	5
160	Development of a Strategy for Selective Metal Recovery from Pregnant Leach Solutions of Kupferschiefer Bioleaching. Advanced Materials Research, 0, 1130, 255-258.	0.3	1
161	Approaches for Eliminating Bacteria Introduced during <i>In Situ</i> Bioleaching of Fractured Sulfidic Ores in Deep Subsurface. Solid State Phenomena, 0, 262, 70-74.	0.3	12

162 Physiology and Ecology of Acidophilic Microorganisms. , 0, , 255-270.

22

#	Article	IF	CITATIONS
163	Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron. , 0, , 53-78.		22
164	Genome-wide identification and expression analysis of the <i>RcYABBY</i> s reveals their potential functions in rose (<i>Rosa chinensis</i> Jacq.). Journal of Horticultural Science and Biotechnology, 0, , 1-10.	1.9	1