M J Dauncey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11241219/publications.pdf Version: 2024-02-01

MIDAUNCEY

#	Article	IF	CITATIONS
1	ELEVATED METABOLIC RATES IN OBESITY. Lancet, The, 1978, 311, 1122-1125.	13.7	152
2	The Absorption and Retention of Magnesium, Zinc, and Copper by Low Birth Weight Infants Fed Pasteurized Human Breast Milk. Pediatric Research, 1977, 11, 1033-1039.	2.3	149
3	Metabolic effects of altering the 24 h energy intake in man, using direct and indirect calorimetry. British Journal of Nutrition, 1980, 43, 257-269.	2.3	121
4	Influence of mild cold on 24 h energy expenditure, resting metabolism and diet-induced thermogenesis. British Journal of Nutrition, 1981, 45, 257-267.	2.3	119
5	Recent advances in nutrition, genes and brain health. Proceedings of the Nutrition Society, 2012, 71, 581-591.	1.0	110
6	Analysis of gaseous exchange in open-circuit indirect calorimetry. Medical and Biological Engineering and Computing, 1984, 22, 333-338.	2.8	108
7	Body fat of British and Dutch infants BMJ: British Medical Journal, 1975, 1, 653-655.	2.3	93
8	Thyroid hormones and thermogenesis. Proceedings of the Nutrition Society, 1990, 49, 203-215.	1.0	83
9	A human calorimeter for the direct and indirect measurement of 24 h energy expenditure. British Journal of Nutrition, 1978, 39, 557-566.	2.3	82
10	Assessment of the heart-rate method for determining energy expenditure in man, using a whole-body calorimeter. British Journal of Nutrition, 1979, 42, 1-13.	2.3	81
11	New insights into nutrition and cognitive neuroscience. Proceedings of the Nutrition Society, 2009, 68, 408-415.	1.0	77
12	Nutritional regulation of growth hormone receptor gene expression. FASEB Journal, 1994, 8, 81-88.	0.5	76
13	Dependence of 24 h energy expenditure in man on the composition of the nutrient intake. British Journal of Nutrition, 1983, 50, 1-13.	2.3	73
14	Nutrition, the brain and cognitive decline: insights from epigenetics. European Journal of Clinical Nutrition, 2014, 68, 1179-1185.	2.9	72
15	Nutrition and neurodevelopment: mechanisms of developmental dysfunction and disease in later life. Nutrition Research Reviews, 1999, 12, 231-253.	4.1	54
16	Activity and energy expenditure. Canadian Journal of Physiology and Pharmacology, 1990, 68, 17-27.	1.4	51
17	Differential Regulation of Porcine Hepatic IGF-I mRNA Expression and Plasma IGF-I Concentration by a Low Lysine Diet. Journal of Nutrition, 2002, 132, 688-692.	2.9	51
18	ROLE OF ACTIVITY-INDUCED THERMOGENESIS IN TWENTY-FOUR HOUR ENERGY EXPENDITURE OF LEAN AND GENETICALLY OBESE (OB/OB) MICE. Quarterly Journal of Experimental Physiology (Cambridge, England), 1987, 72, 549-559.	1.0	46

M J DAUNCEY

#	Article	IF	CITATIONS
19	Nutrition–hormone receptor–gene interactions: implications for development and disease. Proceedings of the Nutrition Society, 2001, 60, 63-72.	1.0	45
20	Effect of dietary composition and cold exposure on non-shivering thermogenesis in young pigs and its alteration by the β-blocker propranolol. British Journal of Nutrition, 1979, 41, 361-370.	2.3	44
21	Developmental expression analysis of thyroid hormone receptor isoforms reveals new insights into their essential functions in cardiac and skeletal muscles. FASEB Journal, 2001, 15, 1367-1376.	0.5	44
22	Increase in Plasma Concentrations of 3,5,3′-Triiodothyronine and Thyroxine after a Meal, and its Dependence on Energy Intake. Hormone and Metabolic Research, 1983, 15, 499-502.	1.5	42
23	Regulatory factors in the control of muscle development. Proceedings of the Nutrition Society, 1996, 55, 543-559.	1.0	40
24	Postnatal regulation of myosin heavy chain isoform expression and metabolic enzyme activity by nutrition. British Journal of Nutrition, 2000, 84, 185-194.	2.3	36
25	THYROID HORMONE METABOLISM AFTER ACCLIMATIZATION TO A WARM OR COLD TEMPERATURE UNDER CONDITIONS OF HIGH OR LOW ENERGY INTAKE. Quarterly Journal of Experimental Physiology (Cambridge, England), 1983, 68, 709-718.	1.0	34
26	Influence of mild cold on the components of 24 hour thermogenesis in rats Journal of Physiology, 1991, 441, 137-154.	2.9	33
27	Nutritional Modulation of Insulin-Like Growth Factor-I Expression in Early Postnatal Piglets. Pediatric Research, 1994, 36, 77-83.	2.3	32
28	Differential expression of thyroid hormone receptor isoforms is strikingly related to cardiac and skeletal muscle phenotype during postnatal development. Journal of Molecular Endocrinology, 1999, 23, 241-254.	2.5	31
29	Role of thyroid hormones in early postnatal development of skeletal muscle and its implications for undernutrition. British Journal of Nutrition, 1996, 76, 841-855.	2.3	30
30	Transcriptional Regulation of Insulin-like Growth Factor-II Gene Expression by Cortisol in Fetal Sheep during Late Gestation. Journal of Biological Chemistry, 1998, 273, 10586-10593.	3.4	28
31	Developmental regulation of cation pumps in skeletal and cardiac muscle. Acta Physiologica Scandinavica, 1996, 156, 313-323.	2.2	27
32	Suboptimal energy balance selectively upâ€regulates muscle GLUT gene expression but reduces insulinâ€dependent glucose uptake during postnatal development. FASEB Journal, 1999, 13, 1405-1413.	0.5	26
33	Influence of thermal and nutritional acclimatization on body temperatures and metabolic rate. Comparative Biochemistry and Physiology A, Comparative Physiology, 1983, 74, 549-553.	0.6	25
34	Perinatal ontogeny of porcine growth hormone receptor gene expression is modulated by thyroid status. European Journal of Endocrinology, 1996, 134, 524-531.	3.7	25
35	Growth Hormone Receptor Gene Expression in Porcine Skeletal and Cardiac Muscles Is Selectively Regulated by Postnatal Undernutrition. Journal of Nutrition, 2000, 130, 2482-2488.	2.9	25
36	3H-Ouabain binding sites in porcine skeletal muscle as influenced by environmental temperature and energy intake. Pflugers Archiv European Journal of Physiology, 1989, 414, 317-323.	2.8	22

M J DAUNCEY

#	Article	IF	CITATIONS
37	Activity-induced thermogenesis in lean and genetically obese (ob/ob) mice. Experientia, 1986, 42, 547-549.	1.2	21
38	Investigation of mechanisms mediating the increase in plasma concentrations of thyroid hormones after a meal in young growing pigs. Journal of Endocrinology, 1993, 139, 131-141.	2.6	19
39	Exogenous growth hormone induces somatotrophic gene expression in neonatal liver and skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R838-R844.	1.8	17
40	Regulation of porcine skeletal muscle nuclear 3,5,3′-tri-iodothyronine receptor binding capacity by thyroid hormones: modification by energy balance. Journal of Endocrinology, 1995, 144, 233-242.	2.6	16
41	Changes in food intake in response to alterations in the ambient temperature: Modifications by previous thermal and nutritional experience. Pflugers Archiv European Journal of Physiology, 1983, 396, 231-237.	2.8	15
42	From early nutrition and later developmentto underlying mechanisms and optimal health. British Journal of Nutrition, 1997, 78, S113-S123.	2.3	15
43	Transient upregulation of IGF-I gene expression in brown adipose tissue of cold-exposed rats. American Journal of Physiology - Endocrinology and Metabolism, 1997, 272, E453-E460.	3.5	15
44	Heat loss from humans measured with a direct calorimeter and heat-flow meters. British Journal of Nutrition, 1980, 43, 87-93.	2.3	14
45	Heat Production and Respiratory Enzymes in Normal and Runt Newborn Piglets. Neonatology, 1987, 51, 324-331.	2.0	14
46	THYROID HORMONE NUCLEAR RECEPTORS IN SKELETAL MUSCLE AS INFLUENCED BY ENVIRONMENTAL TEMPERATURE AND ENERGY INTAKE. Quarterly Journal of Experimental Physiology (Cambridge, England), 1988, 73, 183-191.	1.0	12
47	From early nutrition and later development… to underlying mechanisms and optimal health. British Journal of Nutrition, 1997, 78, 113-123.	2.3	11
48	Modification of thermogenic capacity in neonatal pigs by changes in thyroid status during late gestation. Journal of Developmental Physiology, 1993, 19, 253-61.	0.3	11
49	Influence of a single meal on fractional disappearance and catabolic rates of 3,5,3′-triiodothyronine and thyroxine over 24 hours. Comparative Biochemistry and Physiology A, Comparative Physiology, 1986, 83, 89-92.	0.6	10
50	Administration of 3,5,3'â€ŧriiodothyronine induces a rapid increase in enterocyte lactaseâ€phlorizin hydrolase activity of young pigs on a low energy intake. Experimental Physiology, 1993, 78, 337-346.	2.0	8
51	Comparison of genetic models of obesity in animals with obesity in man. , 1979, , 221-235.		7
52	Influence of a meal on skin temperatures estimated from quantitative IR-thermography. Experientia, 1983, 39, 860-862.	1.2	6
53	TIME COURSE OF THE CHANGE IN NUCLEAR 3,5,3'â€TRIIODOTHYRONINE RECEPTORS OF SKELETAL MUSCLE IN RELATION TO ENERGY INTAKE. Quarterly Journal of Experimental Physiology (Cambridge, England), 1988, 73, 447-449.	1.0	4
54	Short-Term Influence of 3,5,3'-Triiodothyronine Infusion on Resting Metabolic Rate of the Young Pig. Hormone and Metabolic Research, 1990, 22, 374-377.	1.5	4

M J DAUNCEY

#	Article	IF	CITATIONS
55	Energy Metabolism in Man and the Influence of Diet and Temperature: A Review. International Journal of Food Sciences and Nutrition, 1979, 33, 259-269.	2.8	3
56	Carbohydrate-induced thermogenesis and its modification by the β-blocker propranolol. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1984, 77, 23-27.	0.2	3
57	Analysis of gaseous exchange in open-circuit indirect calorimetry. Medical and Biological Engineering and Computing, 1987, 25, 239-240.	2.8	2
58	Estimation of heat loss from human subjects at four experimental temperatures, using a direct calorimeter and heat-flow meters [proceedings]. Proceedings of the Nutrition Society, 1976, 35, 134A-135A.	1.0	2
59	Changes in Skeletal Muscle 3,5,3'-Triiodothyronine Nuclear Receptors with Thyroid Status are Dependent on Energy Balance. Hormone and Metabolic Research, 1990, 22, 128-128.	1.5	1
60	Variations in [3H]ouabain binding of porcine skeletal muscle associated with feeding. Experimental Physiology, 1991, 76, 967-970.	2.0	1