Juan I Godino-Llorente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1124101/publications.pdf

Version: 2024-02-01

87 papers

2,965 citations

32 h-index 52 g-index

90 all docs 90 docs citations

90 times ranked 1908 citing authors

#	Article	lF	CITATIONS
1	Dimensionality Reduction of a Pathological Voice Quality Assessment System Based on Gaussian Mixture Models and Short-Term Cepstral Parameters. IEEE Transactions on Biomedical Engineering, 2006, 53, 1943-1953.	2.5	260
2	Automatic Detection of Voice Impairments by Means of Short-Term Cepstral Parameters and Neural Network Based Detectors. IEEE Transactions on Biomedical Engineering, 2004, 51, 380-384.	2.5	213
3	Methodological issues in the development of automatic systems for voice pathology detection. Biomedical Signal Processing and Control, 2006, 1, 120-128.	3.5	141
4	Automatic Detection of Pathological Voices Using Complexity Measures, Noise Parameters, and Mel-Cepstral Coefficients. IEEE Transactions on Biomedical Engineering, 2011, 58, 370-379.	2.5	123
5	Characterization of Healthy and Pathological Voice Through Measures Based on Nonlinear Dynamics. IEEE Transactions on Audio Speech and Language Processing, 2009, 17, 1186-1195.	3.8	115
6	An improved watershed algorithm based on efficient computation of shortest paths. Pattern Recognition, 2007, 40, 1078-1090.	5.1	89
7	Voice Pathology Detection Using Modulation Spectrum-Optimized Metrics. Frontiers in Bioengineering and Biotechnology, 2016, 4, 1.	2.0	89
8	ECG compression with retrieved quality guaranteed. Electronics Letters, 2004, 40, 1466.	0.5	87
9	Glottal Source biometrical signature for voice pathology detection. Speech Communication, 2009, 51, 759-781.	1.6	86
10	Cepstral peak prominence: A comprehensive analysis. Biomedical Signal Processing and Control, 2014, 14, 42-54.	3.5	85
11	Advances in Parkinson's Disease detection and assessment using voice and speech: A review of the articulatory and phonatory aspects. Biomedical Signal Processing and Control, 2021, 66, 102418.	3.5	80
12	Digital Auscultation Analysis for Heart Murmur Detection. Annals of Biomedical Engineering, 2009, 37, 337-353.	1.3	71
13	Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically detect Parkinson's Disease. Applied Soft Computing Journal, 2018, 62, 649-666.	4.1	71
14	Selection of Dynamic Features Based on Time–Frequency Representations for Heart Murmur Detection from Phonocardiographic Signals. Annals of Biomedical Engineering, 2010, 38, 118-137.	1.3	70
15	Artificial Intelligence Applied to Chest X-Ray Images for the Automatic Detection of COVID-19. A Thoughtful Evaluation Approach. IEEE Access, 2020, 8, 226811-226827.	2.6	70
16	On the use of PRD and CR parameters for ECG compression. Medical Engineering and Physics, 2005, 27, 798-802.	0.8	68
17	The Effectiveness of the Glottal to Noise Excitation Ratio for the Screening of Voice Disorders. Journal of Voice, 2010, 24, 47-56.	0.6	68
18	An improved method for voice pathology detection by means of a HMM-based feature space transformation. Pattern Recognition, 2010, 43, 3100-3112.	5.1	65

#	Article	IF	Citations
19	On combining information from modulation spectra and mel-frequency cepstral coefficients for automatic detection of pathological voices. Logopedics Phoniatrics Vocology, 2011, 36, 60-69.	0.5	59
20	Feature Extraction From Parametric Time–Frequency Representations for Heart Murmur Detection. Annals of Biomedical Engineering, 2010, 38, 2716-2732.	1.3	58
21	Acoustic analysis of voice using WPCVox: a comparative study with Multi Dimensional Voice Program. European Archives of Oto-Rhino-Laryngology, 2008, 265, 465-476.	0.8	55
22	Towards the identification of Idiopathic Parkinson's Disease from the speech. New articulatory kinetic biomarkers. PLoS ONE, 2017, 12, e0189583.	1.1	52
23	Automatic Detection of Laryngeal Pathologies in Records of Sustained Vowels by Means of Mel-Frequency Cepstral Coefficient Parameters and Differentiation of Patients by Sex. Folia Phoniatrica Et Logopaedica, 2009, 61, 146-152.	0.5	49
24	A forced gaussians based methodology for the differential evaluation of Parkinson's Disease by means of speech processing. Biomedical Signal Processing and Control, 2019, 48, 205-220.	3.5	44
25	Wavelet Packets Feasibility Study for the Design of an ECG Compressor. IEEE Transactions on Biomedical Engineering, 2007, 54, 766-769.	2.5	43
26	Automatic detection of voice impairments from text-dependent running speech. Biomedical Signal Processing and Control, 2009, 4, 176-182.	3.5	41
27	On the design of automatic voice condition analysis systems. Part I: Review of concepts and an insight to the state of the art. Biomedical Signal Processing and Control, 2019, 51, 181-199.	3.5	41
28	Segmentation of the glottal space from laryngeal images using the watershed transform. Computerized Medical Imaging and Graphics, 2008, 32, 193-201.	3.5	40
29	Nonlinear Trend Estimation of the Ventricular Repolarization Segment for T-Wave Alternans Detection. IEEE Transactions on Biomedical Engineering, 2010, 57, 2402-2412.	2.5	39
30	An integrated tool for the diagnosis of voice disorders. Medical Engineering and Physics, 2006, 28, 276-289.	0.8	37
31	Embedded filter bank-based algorithm for ECG compression. Signal Processing, 2008, 88, 1402-1412.	2.1	36
32	On the design of automatic voice condition analysis systems. Part II: Review of speaker recognition techniques and study on the effects of different variability factors. Biomedical Signal Processing and Control, 2019, 48, 128-143.	3.5	34
33	Automatic Assessment of Voice Quality According to the GRBAS Scale., 2006, 2006, 2478-81.		32
34	Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson's Disease. Scientific Reports, 2019, 9, 19066.	1.6	32
35	Characterization of Dysphonic Voices by Means of a Filterbank-Based Spectral Analysis: Sustained Vowels and Running Speech. Journal of Voice, 2013, 27, 11-23.	0.6	25
36	Cardiopulmonary Activity Monitoring Using Millimeter Wave Radars. Remote Sensing, 2020, 12, 2265.	1.8	25

#	Article	IF	CITATIONS
37	Pathological Likelihood Index as a Measurement ofÂthe Degree of Voice Normality and Perceived Hoarseness. Journal of Voice, 2010, 24, 667-677.	0.6	24
38	Dysphonia detection based on modulation spectral features and cepstral coefficients. , 2010, , .		23
39	Laryngeal Image Processing of Vocal Folds Motion. Applied Sciences (Switzerland), 2020, 10, 1556.	1.3	22
40	An automatic method to detect and track the glottal gap from high speed videoendoscopic images. BioMedical Engineering OnLine, 2015, 14, 100.	1.3	18
41	Modulation Spectra Morphological Parameters: A New Method to Assess Voice Pathologies according to the GRBAS Scale. BioMed Research International, 2015, 2015, 1-13.	0.9	17
42	Diagnosis of vocal and voice disorders by the speech signal. , 2000, , .		15
43	Effects of Audio Compression in Automatic Detection of Voice Pathologies. IEEE Transactions on Biomedical Engineering, 2008, 55, 2831-2835.	2.5	14
44	Non uniform Embedding based on Relevance Analysis with reduced computational complexity: Application to the detection of pathologies from biosignal recordings. Neurocomputing, 2014, 132, 148-158.	3 . 5	14
45	Entropies from Markov Models as Complexity Measures of Embedded Attractors. Entropy, 2015, 17, 3595-3620.	1.1	13
46	Physical simulation of laryngeal disorders using a multiple-mass vocal fold model. Biomedical Signal Processing and Control, 2012, 7, 65-78.	3. 5	12
47	On the design of automatic voice condition analysis systems. Part III: review of acoustic modelling strategies. Biomedical Signal Processing and Control, 2021, 66, 102049.	3 . 5	12
48	Time–frequency based feature selection for discrimination of non-stationary biosignals. Eurasip Journal on Advances in Signal Processing, 2012, 2012, .	1.0	11
49	Zero-padding or cyclic prefix for MDFT-based filter bank multicarrier communications. Signal Processing, 2012, 92, 1646-1657.	2.1	11
50	Complexity analysis of pathological voices by means of hidden markov entropy measurements., 2009, 2009, 2248-51.		10
51	Simulation of tremulous voices using a biomechanical model. Eurasip Journal on Audio, Speech, and Music Processing, 2015, 2015, .	1.3	9
52	Multimodal and Multi-Output Deep Learning Architectures for the Automatic Assessment of Voice Quality Using the GRB Scale. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 413-422.	7.3	9
53	Automatic assessment of voice signals according to the GRBAS scale using modulation spectra, Mel frequency Cepstral Coefficients and Noise parameters. , 2013, , .		8
54	Glottal Gap tracking by a continuous background modeling using inpainting. Medical and Biological Engineering and Computing, 2017, 55, 2123-2141.	1.6	8

#	Article	IF	CITATIONS
55	Emulating the perceptual capabilities of a human evaluator to map the GRB scale for the assessment of voice disorders. Engineering Applications of Artificial Intelligence, 2019, 82, 236-251.	4.3	8
56	Kernel Principal Component Analysis through Time for Voice Disorder Classification. , 2006, 2006, 5511-4.		6
57	Analysis and Signal Processing of Oesophageal and Pathological Voices. Eurasip Journal on Advances in Signal Processing, 2009, 2009, .	1.0	6
58	P2P Multiuser Low-Cost Universal Solution for On-Demand GPS Positioning and Tracking in Large Environments. IEEE Transactions on Intelligent Transportation Systems, 2011, 12, 1385-1397.	4.7	6
59	Synthesizing the motion of the vocal folds using optical flow based techniques. Biomedical Signal Processing and Control, 2017, 34, 25-35.	3.5	6
60	Evidence of Glottal Source Spectral Features found in Vocal Fold Dynamics. , 0, , .		5
61	Polyphase FIR Networks Based on Frequency Sampling for Multirate DSP Applications. Circuits, Systems, and Signal Processing, 2010, 29, 169-181.	1.2	5
62	Towards objective evaluation of perceived roughness and breathiness: An approach based on mel-frequency cepstral analysis. Logopedics Phoniatrics Vocology, 2011, 36, 52-59.	0.5	5
63	Study of the Automatic Detection of Parkison's Disease Based on Speaker Recognition Technologies and Allophonic Distillation. , 2018, 2018, 1404-1407.		5
64	Effect of Septoplasty On Voice Performance: Nasalance and Acoustic Study. Journal of Craniofacial Surgery, 2019, 30, 1000-1003.	0.3	5
65	Analysis of the impact of analogue telephone channel on MFCC parameters for voice pathology detection. , 0, , .		5
66	Influence of delay time on regularity estimation for voice pathology detection., 2012, 2012, 4217-20.		4
67	Effect of Functional Endoscopic Sinus Surgery on Voice and Speech Recognition. Journal of Voice, 2020, 34, 650.e1-650.e6.	0.6	4
68	"Design for All in the Context of the Information Society― Integration of a Specialist Course in a Generalist M.Sc. Program in Electrical and Electronics Engineering. IEEE Transactions on Education, 2012, 55, 107-117.	2.0	3
69	ROI detection in high speed laryngeal images. , 2014, , .		3
70	ByoVoz Automatic Voice Condition Analysis System for the 2018 FEMH Challenge. , 2018, , .		3
71	Introduction to the Issue on Automatic Assessment of Health Disorders Based on Voice, Speech, and Language Processing. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 234-239.	7.3	3
72	Analysis of Measured and Simulated Supraglottal Acoustic Waves. Journal of Voice, 2016, 30, 518-528.	0.6	2

#	Article	IF	CITATIONS
73	Analysis of the Effects of Supraglottal Tract Surgical Procedures in Automatic Speaker Recognition Performance. IEEE/ACM Transactions on Audio Speech and Language Processing, 2020, 28, 798-812.	4.0	2
74	On improvement of detection of Obstructive Sleep Apnea by partial least square-based extraction of dynamic features., 2010, 2010, 6321-4.		1
75	Effect of a Simulated Analogue Telephone Channel on the Performance of a Remote Automatic System for the Detection of Pathologies in Voice: Impact of Linear Distortions on Cepstrum-Based Assessment - Band Limitation, Frequency Response and Additive Noise. Communications in Computer and Information Science. 2010 173-186.	0.4	1
76	MDFT filter bank multicarrier systems with multiple transmission zeros. , 2011, , .		1
77	Objective measurements to evaluate glottal space segmentation from laryngeal images. , 2012, 2012, 5396-9.		1
78	Analysis of the Validity of E-assessment and Self-Assessment in Formal Assessment in Electrical and Electronics Engineering Studies through a Case Study. , 2012, , .		1
79	Towards collaborative work among speech therapists, phoniatricians, and ENT professionals: Analysis of the impact of ciphering techniques in the performance of an integrated tool for the diagnosis of voice disorders. Biomedical Signal Processing and Control, 2012, 7, 27-36.	3.5	1
80	Glottal Inverse Filtering of Speech Based on Homomorphic Prediction: A Cepstrum-Based Algorithm Not Requiring Prior Detection of Either Pitch or Glottal Closure. Communications in Computer and Information Science, 2011, , 238-251.	0.4	1
81	Approaches to Evaluate Parkinsonian Speech Using Artificial Models. Communications in Computer and Information Science, 2020, , 77-99.	0.4	1
82	Non supervised neural net applied to the detection of voice impairment. , 0, , .		0
83	Automatic Detection of Laryngeal Pathology on Sustained Vowels Using Short-Term Cepstral Parameters: Analysis of Performance and Theoretical Justification. Communications in Computer and Information Science, 2008, , 228-241.	0.4	O
84	Automatic gender recognition in normal and pathological speech., 0,,.		0
85	Automatic glottal tracking from high-speed digital images using a continuous normalized cross correlation. , 0, , .		O
86	An insight to the automatic categorization of speakers according to sex and its application to the detection of voice pathologies: A comparative study. Revista Facultad De IngenierÂa, 2016, , .	0.5	0
87	Influence of Upper Airway Surgery on Voice and Speech Recognition. Journal of Craniofacial Surgery, 2021, 32, 660-663.	0.3	О