List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11240774/publications.pdf

Version: 2024-02-01

	19657	28297
13,259	61	105
citations	h-index	g-index
219	219	11930
docs citations	times ranked	citing authors
	citations 219	13,259 61 citations h-index 219 219

#	Article	IF	CITATIONS
1	Mercury L $\hat{l}\pm 1$ High Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy: A Versatile Speciation Probe for Mercury. Inorganic Chemistry, 2022, 61, 5201-5214.	4.0	7
2	Molecular Fates of Organometallic Mercury in Human Brain. ACS Chemical Neuroscience, 2022, 13, 1756-1768.	3. 5	12
3	Hg(II) Binding to Thymine Bases in DNA. Inorganic Chemistry, 2021, 60, 7442-7452.	4.0	7
4	High Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy: An Analytical Method for Selenium Speciation. Analytical Chemistry, 2021, 93, 9235-9243.	6.5	14
5	Sulfur $\hat{Kl^2}$ X-ray emission spectroscopy: comparison with sulfur K-edge X-ray absorption spectroscopy for speciation of organosulfur compounds. Physical Chemistry Chemical Physics, 2021, 23, 4500-4508.	2.8	18
6	Oxygen K-edge X-ray absorption spectra of liquids with minimization of window contamination. Journal of Synchrotron Radiation, 2021, 28, 1845-1849.	2.4	2
7	Abridged spectral matrix inversion: parametric fitting of X-ray fluorescence spectra following integrative data reduction. Journal of Synchrotron Radiation, 2021, 28, 1881-1890.	2.4	0
8	PIN FORMED 2 Modulates the Transport of Arsenite in Arabidopsis thaliana. Plant Communications, 2020, 1, 100009.	7.7	17
9	Human red blood cell uptake and sequestration of arsenite and selenite: Evidence of seleno-bis(S-glutathionyl) arsinium ion formation in human cells. Biochemical Pharmacology, 2020, 180, 114141.	4.4	7
10	Structural Characterization of the Solution Chemistry of Zirconium(IV) Desferrioxamine: A Coordination Sphere Completed by Hydroxides. Inorganic Chemistry, 2020, 59, 17443-17452.	4.0	13
11	PBT2 acts through a different mechanism of action than other 8-hydroxyquinolines: an X-ray fluorescence imaging study. Metallomics, 2020, 12, 1979-1994.	2.4	13
12	Copper(II) Binding to PBT2 Differs from That of Other 8-Hydroxyquinoline Chelators: Implications for the Treatment of Neurodegenerative Protein Misfolding Diseases. Inorganic Chemistry, 2020, 59, 17519-17534.	4.0	15
13	X-ray absorption spectroscopy of organic sulfoxides. RSC Advances, 2020, 10, 26229-26238.	3.6	5
14	Solution Chemistry of Copper(II) Binding to Substituted 8-Hydroxyquinolines. Inorganic Chemistry, 2020, 59, 13858-13874.	4.0	6
15	Studies of selenium and arsenic mutual protection in human HepG2 cells. Chemico-Biological Interactions, 2020, 327, 109162.	4.0	7
16	Reply to Comments on "Rethinking the Minamata Tragedy: What Mercury Species Was Really Responsible?― Environmental Science & Environmental Environmen	10.0	5
17	Direct Observation of Methylmercury and Auranofin Binding to Selenocysteine in Thioredoxin Reductase. Inorganic Chemistry, 2020, 59, 2711-2718.	4.0	43
18	Rethinking the Minamata Tragedy: What Mercury Species Was Really Responsible?. Environmental Science &	10.0	40

#	Article	IF	CITATIONS
19	Prolonged Blood-Brain Barrier Injury Occurs After Experimental Intracerebral Hemorrhage and Is Not Acutely Associated with Additional Bleeding. Translational Stroke Research, 2019, 10, 287-297.	4.2	38
20	Disruption of selenium transport and function is a major contributor to mercury toxicity in zebrafish larvae. Metallomics, 2019, 11, 621-631.	2.4	19
21	Visualizing sulfur with X-rays: From molecules to tissues. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 618-623.	1.6	3
22	X-ray Absorption Spectroscopy Investigations of Copper(II) Coordination in the Human Amyloid \hat{l}^2 Peptide. Inorganic Chemistry, 2019, 58, 6294-6311.	4.0	30
23	Sulfur K-Edge X-ray Absorption Spectroscopy of Aryl and Aryl–Alkyl Sulfides. Journal of Physical Chemistry A, 2019, 123, 2861-2866.	2.5	4
24	Revealing the Penumbra through Imaging Elemental Markers of Cellular Metabolism in an Ischemic Stroke Model. ACS Chemical Neuroscience, 2018, 9, 886-893.	3.5	19
25	Cryoprotectants Severely Exacerbate X-ray-Induced Photoreduction. Journal of Physical Chemistry Letters, 2018, 9, 540-544.	4.6	13
26	X-ray spectroscopy and imaging of selenium in living systems. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2383-2392.	2.4	16
27	A comparison of parametric and integrative approaches for X-ray fluorescence analysis appliedÂto a Stroke model. Journal of Synchrotron Radiation, 2018, 25, 1780-1789.	2.4	11
28	A Photochemically Generated Selenyl Free Radical Observed by High Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy. Inorganic Chemistry, 2018, 57, 10867-10872.	4.0	14
29	X-ray-Induced Photoreduction of Hg(II) in Aqueous Frozen Solution Yields Nearly Monatomic Hg(0). Inorganic Chemistry, 2018, 57, 8205-8210.	4.0	3
30	X-ray Absorption Spectroscopy of Metals in Biology. , 2018, , 1-7.		0
31	X-ray Fluorescence Imaging: Elemental and Chemical Speciation Mapping of Biological Systems. , 2018, , 1-6.		O
32	Mononuclear Sulfido-Tungsten(V) Complexes: Completing the Tp*MEXY (M = Mo, W; E = O, S) Series. Inorganic Chemistry, 2017, 56, 5189-5202.	4.0	6
33	The active site structure and catalytic mechanism of arsenite oxidase. Scientific Reports, 2017, 7, 1757.	3.3	25
34	Binding of Copper and Cisplatin to Atox1 Is Mediated by Glutathione through the Formation of Metal–Sulfur Clusters. Biochemistry, 2017, 56, 3129-3141.	2.5	27
35	Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization. Protein Expression and Purification, 2017, 134, 47-62.	1.3	5
36	Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. Acta Neuropathologica, 2017, 134, 45-64.	7.7	94

#	Article	IF	Citations
37	Selenium-mediated arsenic excretion in mammals: a synchrotron-based study of whole-body distribution and tissue-specific chemistry. Metallomics, 2017, 9, 1585-1595.	2.4	34
38	Biological iron-sulfur storage in a thioferrate-protein nanoparticle. Nature Communications, 2017, 8, 16110.	12.8	20
39	Photochemically Generated Thiyl Free Radicals Observed by X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2017, 139, 11519-11526.	13.7	23
40	X-ray Absorption Spectroscopy of Aliphatic Organic Sulfides. Journal of Physical Chemistry A, 2017, 121, 6256-6261.	2.5	11
41	Remarkable differences in the biochemical fate of Cd ²⁺ , Hg ²⁺ , CH ₃ Hg ⁺ and thimerosal in red blood cell lysate. Metallomics, 2017, 9, 1060-1072.	2.4	26
42	Effects of inorganic mercury on the olfactory pits of zebrafish larvae. Metallomics, 2016, 8, 514-517.	2.4	8
43	Chemical Sensitivity of the Sulfur K-Edge X-ray Absorption Spectra of Organic Disulfides. Journal of Physical Chemistry A, 2016, 120, 7279-7286.	2.5	13
44	Insights into the Nature of the Chemical Bonding in Thiophene-2-thiol from X-ray Absorption Spectroscopy. Journal of Physical Chemistry A, 2016, 120, 6929-6933.	2.5	11
45	Imaging Taurine in the Central Nervous System Using Chemically Specific X-ray Fluorescence Imaging at the Sulfur K-Edge. Analytical Chemistry, 2016, 88, 10916-10924.	6.5	19
46	Chemical basis for the detoxification of cisplatin-derived hydrolysis products by sodium thiosulfate. Journal of Inorganic Biochemistry, 2016, 162, 96-101.	3.5	14
47	Observation of the seleno bis-(S-glutathionyl) arsinium anion in rat bile. Journal of Inorganic Biochemistry, 2016, 158, 24-29.	3.5	17
48	Chemical Biology in the Embryo: <i>In Situ</i> Imaging of Sulfur Biochemistry in Normal and Proteoglycan-Deficient Cartilage Matrix. Biochemistry, 2016, 55, 2441-2451.	2.5	13
49	Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy. Environmental Science & Environmental	10.0	24
50	Arsenic transfer and biotransformation in a fully characterized freshwater food web. Coordination Chemistry Reviews, 2016, 306, 558-565.	18.8	9
51	Novel bio-spectroscopic imaging reveals disturbed protein homeostasis and thiol redox with protein aggregation prior to hippocampal CA1 pyramidal neuron death induced by global brain ischemia in the rat. Free Radical Biology and Medicine, 2015, 89, 806-818.	2.9	24
52	In Situ Biospectroscopic Investigation of Rapid Ischemic and Postmortem Induced Biochemical Alterations in the Rat Brain. ACS Chemical Neuroscience, 2015, 6, 226-238.	3.5	41
53	Application of a spoked channel array to confocal X-ray fluorescence imaging and X-ray absorption spectroscopy of medieval stained glass. Journal of Analytical Atomic Spectrometry, 2015, 30, 759-766.	3.0	13
54	Selenium Preferentially Accumulates in the Eye Lens Following Embryonic Exposure: A Confocal X-ray Fluorescence Imaging Study. Environmental Science & Emp; Technology, 2015, 49, 2255-2261.	10.0	35

#	Article	IF	CITATIONS
55	d ¹ Oxosulfido-Mo(V) Compounds: First Isolation and Unambiguous Characterization of an Extended Series. Inorganic Chemistry, 2015, 54, 6386-6396.	4.0	11
56	Phenylthiourea alters toxicity of mercury compounds in zebrafish larvae. Journal of Inorganic Biochemistry, 2015, 151, 10-17.	3.5	18
57	Soft tissue measurement of arsenic and selenium in an animal model using portable X-ray fluorescence. Radiation Physics and Chemistry, 2015, 116, 241-247.	2.8	11
58	Interaction of mercury and selenium in the larval stage zebrafish vertebrate model. Metallomics, 2015, 7, 1247-1255.	2.4	34
59	Structural basis of enzymatic benzene ring reduction. Nature Chemical Biology, 2015, 11, 586-591.	8.0	52
60	Synchrotron X-ray fluorescence imaging evidence of biogenic mercury identified in a burial in colonial Antigua. Journal of Archaeological Science, 2015, 58, 26-30.	2.4	12
61	High Affinity Binding of Indium and Ruthenium Ions by Gastrins. PLoS ONE, 2015, 10, e0140126.	2.5	5
62	Synchrotron X-ray absorption spectroscopy analysis of arsenic chemical speciation in human nail clippings. Environmental Chemistry, 2014, 11, 632.	1.5	9
63	Structural characterization of Cd2+ complexes in solution with DMSA and DMPS. Journal of Inorganic Biochemistry, 2014, 136, 99-106.	3.5	12
64	The solution structure of the copper clioquinol complex. Journal of Inorganic Biochemistry, 2014, 133, 50-56.	3.5	26
65	Molybdenum and tungsten oxygen transferases – structural and functional diversity within a common active site motif. Metallomics, 2014, 6, 15-24.	2.4	47
66	Combined EXAFS and DFT Structure Calculations Provide Structural Insights into the 1:1 Multiâ∈Histidine Complexes of Cu ^{II} , Cu ^I , and Zn ^{II} with the Tandem Octarepeats of the Mammalian Prion Protein. Chemistry - A European Journal, 2014, 20, 9770-9783.	3.3	21
67	Long-Range Chemical Sensitivity in the Sulfur K-Edge X-ray Absorption Spectra of Substituted Thiophenes. Journal of Physical Chemistry A, 2014, 118, 7796-7802.	2.5	31
68	Elemental and Chemically Specific X-ray Fluorescence Imaging of Biological Systems. Chemical Reviews, 2014, 114, 8499-8541.	47.7	234
69	Methylmercury Targets Photoreceptor Outer Segments. ACS Chemical Biology, 2013, 8, 2256-2263.	3.4	40
70	New Insights into Metal Interactions with the Prion Protein: EXAFS Analysis and Structure Calculations of Copper Binding to a Single Octarepeat from the Prion Protein. Journal of Physical Chemistry B, 2013, 117, 13822-13841.	2.6	21
71	X-ray Absorption Spectroscopy of a Quantitatively Mo(V) Dimethyl Sulfoxide Reductase Species. Inorganic Chemistry, 2013, 52, 2830-2837.	4.0	26
72	Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae. ACS Chemical Biology, 2012, 7, 411-420.	3.4	83

#	Article	IF	Citations
73	X-ray Absorption Spectroscopy at the Sulfur K-Edge: A New Tool to Investigate the Biochemical Mechanisms of Neurodegeneration. ACS Chemical Neuroscience, 2012, 3, 178-185.	3.5	61
74	X-ray-induced photo-chemistry and X-ray absorptionÂspectroscopy of biological samples. Journal of Synchrotron Radiation, 2012, 19, 875-886.	2.4	141
75	X-ray absorption spectroscopy at a protein crystallography facility: the Canadian Light Source beamline 08B1-1. Journal of Synchrotron Radiation, 2012, 19, 887-891.	2.4	3
76	Metalloprotein active site structure determination: Synergy between X-ray absorption spectroscopy and X-ray crystallography. Journal of Inorganic Biochemistry, 2012, 115, 127-137.	3.5	74
77	The fictile coordination chemistry of cuprous-thiolate sites in copper chaperones. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 938-947.	1.0	27
78	The chemical forms of mercury and selenium in whale skeletal muscle. Metallomics, 2011, 3, 1232.	2.4	25
79	Prion protein expression level alters regional copper, iron and zinc content in the mouse brain. Metallomics, 2011, 3, 206.	2.4	91
80	Molybdenum Site Structure of <i>Escherichia coli</i> YedY, a Novel Bacterial Oxidoreductase. Inorganic Chemistry, 2011, 50, 732-740.	4.0	21
81	Nature of Halide Binding to the Molybdenum Site of Sulfite Oxidase. Inorganic Chemistry, 2011, 50, 9406-9413.	4.0	8
82	Towards a custom chelator for mercury: evaluation of coordination environments by molecular modeling. Journal of Biological Inorganic Chemistry, 2011, 16, 15-24.	2.6	16
83	Use of Soller slits to remove reference foil fluorescence from transmission spectra. Journal of Synchrotron Radiation, 2011, 18, 527-529.	2.4	5
84	Spectroscopic studies of molybdenum and tungsten enzymes. Coordination Chemistry Reviews, 2011, 255, 1055-1084.	18.8	74
85	Probing the coordination behavior of Hg2+, CH3Hg+, and Cd2+ towards mixtures of two biological thiols by HPLC-ICP-AES. Journal of Inorganic Biochemistry, 2011, 105, 375-381.	3.5	39
86	The chemical forms of mercury in human hair: a study using X-ray absorption spectroscopy. Journal of Biological Inorganic Chemistry, 2010, 15, 709-715.	2.6	30
87	Dynamic accumulation and redistribution of methylmercury in the lens of developing zebrafish embryos and larvae. Journal of Biological Inorganic Chemistry, 2010, 15, 1137-1145.	2.6	30
88	The Chemical Nature of Mercury in Human Brain Following Poisoning or Environmental Exposure. ACS Chemical Neuroscience, 2010, 1, 810-818.	3.5	168
89	The Structures of the C185S and C185A Mutants of Sulfite Oxidase Reveal Rearrangement of the Active Site. Biochemistry, 2010, 49, 3989-4000.	2.5	26
90	Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence. Physics in Medicine and Biology, 2009, 54, 651-663.	3.0	112

#	Article	IF	Citations
91	Arsenic Kâ€edge Xâ€ray absorption spectroscopy of arsenic in seafood. Molecular Nutrition and Food Research, 2009, 53, 552-557.	3.3	14
92	Characterization of a modified nitrogenase Fe protein from Klebsiella pneumoniae in which the 4Fe4S cluster has been replaced by a 4Fe4Se cluster. Journal of Biological Inorganic Chemistry, 2009, 14, 673-682.	2.6	25
93	Molybdenum Induces the Expression of a Protein Containing a New Heterometallic Mo-Fe Cluster in <i>Desulfovibrio alaskensis</i> <ionumber 1.5<="" td=""><td>2.5</td><td>25</td></ionumber>	2.5	25
94	Localizing the Chemical Forms of Sulfur in Vivo Using X-ray Fluorescence Spectroscopic Imaging: Application to Onion (<i>Allium cepa</i>) Tissues. Biochemistry, 2009, 48, 6846-6853.	2.5	43
95	Tracing Copperâ^'Thiomolybdate Complexes in a Prospective Treatment for Wilson's Disease. Biochemistry, 2009, 48, 891-897.	2.5	70
96	The Chemical Forms of Mercury in Aged and Fresh Dental Amalgam Surfaces. Chemical Research in Toxicology, 2009, 22, 1761-1764.	3.3	19
97	Insect excretes unusual six-coordinate pentavalent arsenic species. Environmental Chemistry, 2009, 6, 298.	1.5	8
98	Xâ€Ray Absorption Spectroscopy of Cuprousâ€Thiolate Clusters in <i>Saccharomyces cerevisiae</i> Metallothionein. Chemistry and Biodiversity, 2008, 5, 2042-2049.	2.1	19
99	Structure of the Molybdenum Site of Escherichia coli Trimethylamine N-Oxide Reductase. Inorganic Chemistry, 2008, 47, 1074-1078.	4.0	33
100	Mo ^V Electron Paramagnetic Resonance of Sulfite Oxidase Revisited: The Low-pH Chloride Signal. Inorganic Chemistry, 2008, 47, 2033-2038.	4.0	28
101	Electronic Structure Description of thecis-MoOS Unit in Models for Molybdenum Hydroxylases. Journal of the American Chemical Society, 2008, 130, 55-65.	13.7	58
102	Structural and Biological Analysis of the Metal Sites of <i>Escherichia coli</i> Hydrogenase Accessory Protein HypB. Biochemistry, 2008, 47, 11981-11991.	2.5	45
103	Chemical Forms of Mercury and Selenium in Fish Following Digestion with Simulated Gastric Fluid. Chemical Research in Toxicology, 2008, 21, 2106-2110.	3.3	47
104	Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12108-12112.	7.1	129
105	X-Ray Absorption Spectroscopy as a Probe of Microbial Sulfur Biochemistry: the Nature of Bacterial Sulfur Globules Revisited. Journal of Bacteriology, 2008, 190, 6376-6383.	2.2	53
106	Chapter 5 Inorganic Molecular Toxicology and Chelation Therapy of Heavy Metals and Metalloids. Advances in Molecular Toxicology, 2008, 2, 123-152.	0.4	9
107	Insights into the Chemical Biology of Selenium. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 924-930.	1.6	8
108	Development of a combined K-edge subtraction and fluorescence subtraction imaging system for small animals. Review of Scientific Instruments, 2008, 79, 085102.	1.3	5

#	Article	IF	Citations
109	Characterization of the Cytochrome c Oxidase Assembly Factor Cox19 of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2007, 282, 10233-10242.	3.4	55
110	X-Ray Absorption Spectroscopy Imaging of Biological Tissues. AIP Conference Proceedings, 2007, , .	0.4	6
111	Mercury Speciation in Piscivorous Fish from Mining-Impacted Reservoirs. Environmental Science & Emp; Technology, 2007, 41, 2745-2749.	10.0	69
112	Interaction of Product Analogues with the Active Site of Rhodobacter Sphaeroides Dimethyl Sulfoxide Reductase. Inorganic Chemistry, 2007, 46, 3097-3104.	4.0	21
113	Sulfur X-ray Absorption Spectroscopy of Living Mammalian Cells:  An Enabling Tool for Sulfur Metabolomics. In Situ Observation of Uptake of Taurine into MDCK Cells. Biochemistry, 2007, 46, 14735-14741.	2.5	24
114	Modified Active Site Coordination in a Clinical Mutant of Sulfite Oxidase. Journal of the American Chemical Society, 2007, 129, 9421-9428.	13.7	30
115	Synthesis, Characterization, and Biomimetic Chemistry of cis-Oxosulfidomolybdenum(VI) Complexes Stabilized by an Intramolecular Mo(O)S···S Interaction. Inorganic Chemistry, 2007, 46, 939-948.	4.0	29
116	X-ray Absorption Spectroscopic Characterization of the Molybdenum Site of Escherichia coli Dimethyl Sulfoxide Reductase. Inorganic Chemistry, 2007, 46, 2-4.	4.0	24
117	Chemical Form of Selenium in Naturally Selenium-Rich Lentils (Lens culinarisL.) from Saskatchewan. Journal of Agricultural and Food Chemistry, 2007, 55, 7337-7341.	5.2	64
118	Reversed-phase high-performance liquid chromatographic separation of inorganic mercury and methylmercury driven by their different coordination chemistry towards thiols. Journal of Chromatography A, 2007, 1156, 331-339.	3.7	37
119	Strong poison revisited. Journal of Inorganic Biochemistry, 2007, 101, 1891-1893.	3.5	22
120	CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator., 2007, 3, 60-68.		291
121	The chemical form of mitochondrial iron in Friedreich's ataxia. Journal of Inorganic Biochemistry, 2007, 101, 957-966.	3.5	36
122	X-RAY ABSORPTION SPECTROSCOPY IN BIOLOGY AND CHEMISTRY. , 2007, , 97-119.		14
123	Models for the Molybdenum Hydroxylases:Â Synthesis, Characterization and Reactivity ofcis-Oxosulfido-Mo(VI) Complexes. Journal of the American Chemical Society, 2006, 128, 305-316.	13.7	57
124	More on Molecular Mimicry in Mercury Toxicology. Chemical Research in Toxicology, 2006, 19, 1118-1120.	3.3	8
125	Localizing the Biochemical Transformations of Arsenate in a Hyperaccumulating Fern. Environmental Science & Environmental Scie	10.0	195
126	The Seleno Bis(S-glutathionyl) Arsinium Ion Is Assembled in Erythrocyte Lysate. Chemical Research in Toxicology, 2006, 19, 601-607.	3.3	62

#	Article	IF	Citations
127	Structure of the Active Site of Sulfite Dehydrogenase from Starkeya novella. Inorganic Chemistry, 2006, 45, 7488-7492.	4.0	24
128	Molecular Mimicry in Mercury Toxicology. Chemical Research in Toxicology, 2006, 19, 753-759.	3.3	71
129	High-Resolution EXAFS of the Active Site of Human Sulfite Oxidase:Â Comparison with Density Functional Theory and X-ray Crystallographic Results. Inorganic Chemistry, 2006, 45, 493-495.	4.0	38
130	A cadmium enzyme from a marine diatom. Nature, 2005, 435, 42-42.	27.8	518
131	Using softer X-ray absorption spectroscopy to probe biological systems. Journal of Synchrotron Radiation, 2005, 12, 392-401.	2.4	31
132	Human Sco1 and Sco2 Function as Copper-binding Proteins. Journal of Biological Chemistry, 2005, 280, 34113-34122.	3.4	147
133	High-Resolution X-ray Emission Spectroscopy of Molybdenum Compounds. Inorganic Chemistry, 2005, 44, 2579-2581.	4.0	22
134	Nature of the Catalytically Labile Oxygen at the Active Site of Xanthine Oxidase. Journal of the American Chemical Society, 2005, 127, 4518-4522.	13.7	86
135	X-ray Absorption Spectroscopy of Selenate Reductase. Inorganic Chemistry, 2004, 43, 402-404.	4.0	35
136	The Sulfur Chemistry of Shiitake Mushroom. Journal of the American Chemical Society, 2004, 126, 458-459.	13.7	42
137	Selenium Biotransformations in an Insect Ecosystem:Â Effects of Insects on Phytoremediation. Environmental Science & Environmental Science & Environme	10.0	59
138	C-Terminal Domain of the Membrane Copper Transporter Ctr1 from Saccharomyces cerevisiae Binds Four Cu(I) Ions as a Cuprous-Thiolate Polynuclear Cluster:  Sub-femtomolar Cu(I) Affinity of Three Proteins Involved in Copper Trafficking. Journal of the American Chemical Society, 2004, 126, 3081-3090.	13.7	237
139	Coordination Chemistry at the Molybdenum Site of Sulfite Oxidase: Redox-Induced Structural Changes in the Cysteine 207 to Serine Mutant. Inorganic Chemistry, 2004, 43, 8456-8460.	4.0	31
140	Mercury Binding to the Chelation Therapy Agents DMSA and DMPS and the Rational Design of Custom Chelators for Mercury. Chemical Research in Toxicology, 2004, 17, 999-1006.	3.3	102
141	The Chemical Form of Mercury in Fish. Science, 2003, 301, 1203-1203.	12.6	1,214
142	Thioredoxin�h overexpressed in barley seeds enhances selenite resistance and uptake during germination and early seedling development. Planta, 2003, 218, 186-191.	3.2	25
143	Imaging of selenium in plants using tapered metal monocapillary optics. Journal of Synchrotron Radiation, 2003, 10, 289-290.	2.4	19
144	Tetrathiomolybdate Causes Formation of Hepatic Copperâ [^] Molybdenum Clusters in an Animal Model of Wilson's Disease. Journal of the American Chemical Society, 2003, 125, 1704-1705.	13.7	59

#	Article	IF	Citations
145	Redox Interplay of Oxoâ^'Thioâ^'Tungsten Centers with Sulfur-Donor Co-Ligands. Inorganic Chemistry, 2003, 42, 5909-5916.	4.0	17
146	Chemical Form and Distribution of Selenium and Sulfur in the Selenium Hyperaccumulator Astragalus bisulcatus Â. Plant Physiology, 2003, 131, 1460-1467.	4.8	163
147	Recombinant Rhodobacter capsulatus Xanthine Dehydrogenase, a Useful Model System for the Characterization of Protein Variants Leading to Xanthinuria I in Humans. Journal of Biological Chemistry, 2003, 278, 20802-20811.	3.4	57
148	Yeast Cox11, a Protein Essential for Cytochrome cOxidase Assembly, Is a Cu(I)-binding Protein. Journal of Biological Chemistry, 2002, 277, 31237-31242.	3.4	143
149	Biliary Excretion of [(GS)2AsSe]-after Intravenous Injection of Rabbits with Arsenite and Selenate. Chemical Research in Toxicology, 2002, 15, 1466-1471.	3.3	76
150	The Active Site of Arsenite Oxidase from Alcaligenes faecalis. Journal of the American Chemical Society, 2002, 124, 11276-11277.	13.7	74
151	Unraveling the Substrateâ^'Metal Binding Site of Ferrochelatase:  An X-ray Absorption Spectroscopic Study. Biochemistry, 2002, 41, 4809-4818.	2.5	47
152	Structures of the Cuprous-Thiolate Clusters of the Mac1 and Ace1 Transcriptional Activators. Biochemistry, 2002, 41, 6469-6476.	2.5	81
153	Synthesis, Purification, and Structural Characterization of the Dimethyldiselenoarsinate Anion. Inorganic Chemistry, 2002, 41, 5426-5432.	4.0	27
154	Copper Transfer from the Cu(I) Chaperone, CopZ, to the Repressor, Zn(II)CopY: Metal Coordination Environments and Protein Interactionsâ€. Biochemistry, 2002, 41, 5822-5829.	2.5	116
155	Spectroscopic Studies of Pyrococcus furiosus Superoxide Reductase:  Implications for Active-Site Structures and the Catalytic Mechanism. Journal of the American Chemical Society, 2002, 124, 788-805.	13.7	120
156	Anthocyanins facilitate tungsten accumulation in Brassica. Physiologia Plantarum, 2002, 116, 351-358.	5.2	75
157	Solution structural studies of molybdate–nucleotide polyanions. Journal of Inorganic Biochemistry, 2002, 88, 274-283.	3.5	11
158	Synthesis, X-ray absorption spectroscopy and purification of the seleno-bis (S-glutathionyl) arsinium anion from selenide, arsenite and glutathione. Journal of Organometallic Chemistry, 2002, 650, 108-113.	1.8	20
159	Removal of a cysteine ligand from rubredoxin: assembly of Fe2S2 and Fe(S-Cys)3(OH) centres. Journal of Biological Inorganic Chemistry, 2002, 7, 781-790.	2.6	19
160	In situ observation of the generation of isothiocyanates from sinigrin in horseradish and wasabi. Biochimica Et Biophysica Acta - General Subjects, 2001, 1527, 156-160.	2.4	33
161	Fluorine Encapsulation and Stabilization of Biologically Relevant Low-Valence Copper-Oxo Cores. Inorganic Chemistry, 2001, 40, 4812-4813.	4.0	47
162	Analysis of Sulfur Biochemistry of Sulfur Bacteria Using X-ray Absorption Spectroscopy. Biochemistry, 2001, 40, 8138-8145.	2.5	153

#	Article	IF	Citations
163	Synthesis, Characterization, and Electrochemistry of cis-Oxothio- and cis-Bis(thio)tungsten(VI) Complexes of Hydrotris(3,5-dimethylpyrazol-1-yl)borate. Inorganic Chemistry, 2001, 40, 4563-4573.	4.0	29
164	The Mitochondrial Copper Metallochaperone Cox17 Exists as an Oligomeric, Polycopper Complex. Biochemistry, 2001, 40, 743-751.	2.5	115
165	Human Cytosolic Iron Regulatory Protein 1 Contains a Linear Ironâ [°] Sulfur Cluster. Journal of the American Chemical Society, 2001, 123, 10121-10122.	13.7	23
166	Yeast Sco1, a Protein Essential for Cytochrome cOxidase Function Is a Cu(I)-binding Protein. Journal of Biological Chemistry, 2001, 276, 42520-42526.	3.4	161
167	Molybdenum Sequestration in BrassicaSpecies. A Role for Anthocyanins?. Plant Physiology, 2001, 126, 1391-1402.	4.8	162
168	XAS and microscopy studies of the uptake and bio-transformation of copper in Larrea tridentata (creosote bush). Microchemical Journal, 2000, 65, 227-236.	4.5	53
169	Reduction and Coordination of Arsenic in Indian Mustard. Plant Physiology, 2000, 122, 1171-1178.	4.8	525
170	Fate of Selenate and Selenite Metabolized by Rhodobacter sphaeroides. Applied and Environmental Microbiology, 2000, 66, 4849-4853.	3.1	74
171	Stoichiometry of Complex Formation between Copper(I) and the N-Terminal Domain of the Menkes Proteinâ€. Biochemistry, 2000, 39, 6857-6863.	2.5	49
172	A Novel Protein-Bound Copperâ^'Molybdenum Cluster. Journal of the American Chemical Society, 2000, 122, 8321-8322.	13.7	90
173	A Metabolic Link between Arsenite and Selenite:Â The Seleno-bis(S-glutathionyl) Arsinium Ion. Journal of the American Chemical Society, 2000, 122, 4637-4639.	13.7	132
174	Structural Basis of the Antagonism between Inorganic Mercury and Selenium in Mammals. Chemical Research in Toxicology, 2000, 13, 1135-1142.	3.3	158
175	Structure of the Molybdenum Site of Rhodobacter sphaeroides Biotin Sulfoxide Reductase. Biochemistry, 2000, 39, 4046-4052.	2.5	33
176	Generation and biomimetic chemistry of tungsten–dithiolene complexes containing the hydrotris(3,5-dimethylpyrazol-1-yl)borate ligand. Journal of Inorganic Biochemistry, 1999, 76, 39-45.	3.5	15
177	X-ray absorption spectroscopy of selenium-containing amino acids. Journal of Biological Inorganic Chemistry, 1999, 4, 791-794.	2.6	66
178	X-ray absorption spectroscopy of cadmium phytochelatin and model systems. BBA - Proteins and Proteomics, 1999, 1429, 351-364.	2.1	83
179	Structure of the Molybdenum Site of Dimethyl Sulfoxide Reductase. Journal of the American Chemical Society, 1999, 121, 1256-1266.	13.7	149
180	Structural Changes Induced by Catalytic Turnover at the Molybdenum Site of Arabidopsis Nitrate Reductase. Journal of the American Chemical Society, 1999, 121, 9730-9731.	13.7	39

#	Article	IF	Citations
181	Observation of Ligand-Based Redox Chemistry at the Active Site of a Molybdenum Enzyme. Journal of the American Chemical Society, 1999, 121, 2625-2626.	13.7	52
182	X-ray Absorption Spectroscopy of Chicken Sulfite Oxidase Crystals. Inorganic Chemistry, 1999, 38, 2539-2540.	4.0	63
183	An edge with XAS. Nature Structural Biology, 1998, 5, 645-647.	9.7	41
184	Sulfur K-edge X-ray absorption spectroscopy for determining the chemical speciation of sulfur in biological systems. FEBS Letters, 1998, 441, 11-14.	2.8	150
185	The Rubredoxin fromClostridium pasteurianum:Â Mutation of the Iron Cysteinyl Ligands to Serine. Crystal and Molecular Structures of Oxidized and Dithionite-Treated Forms of the Cys42Ser Mutant. Journal of the American Chemical Society, 1998, 120, 4135-4150.	13.7	81
186	X-ray Absorption Spectroscopy of the Molybdenum Site of Escherichia coli Formate Dehydrogenase. Journal of the American Chemical Society, 1998, 120, 1267-1273.	13.7	90
187	Characterization of the Copper Chaperone Cox17 ofSaccharomyces cerevisiaeâ€. Biochemistry, 1998, 37, 7572-7577.	2.5	111
188	Interaction of Arsenate with the Molybdenum Site of Sulfite Oxidase. Journal of the American Chemical Society, 1998, 120, 4522-4523.	13.7	38
189	Oxotungsten(VI) Chemistry of Hydrotris(3,5-dimethylpyrazol-1-yl)borate:Â Hydroxodioxotungsten(VI), Trioxotungsten(VI), and (μ-Oxo)bis[dioxotungsten(VI)] Complexes. Inorganic Chemistry, 1997, 36, 472-479.	4.0	22
190	X-ray absorption spectroscopy of molybdenum enzymes. Journal of Biological Inorganic Chemistry, 1997, 2, 790-796.	2.6	30
191	Presence of a Copper(I)â°'Thiolate Regulatory Domain in the Copper-Activated Transcription Factor Amt1â€. Biochemistry, 1996, 35, 14583-14589.	2.5	53
192	X-ray Absorption Spectroscopy of Dimethyl Sulfoxide Reductase fromRhodobacter sphaeroides. Journal of the American Chemical Society, 1996, 118, 1113-1117.	13.7	123
193	Dinitrogen Cleavage by Three-Coordinate Molybdenum(III) Complexes:Â Mechanistic and Structural Data1. Journal of the American Chemical Society, 1996, 118, 8623-8638.	13.7	394
194	The Molybdenum Site of Sulfite Oxidase:Â A Comparison of Wild-Type and the Cysteine 207 to Serine Mutant Using X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 1996, 118, 8588-8592.	13.7	123
195	Alteration of Axial Coordination by Protein Engineering in Myoglobin. Journal of Biological Chemistry, 1995, 270, 15993-16001.	3.4	63
196	Polarized X-ray Absorption Spectroscopy of Cupric Chloride Dihydrate. Inorganic Chemistry, 1995, 34, 3142-3152.	4.0	82
197	Mixed Cu+ and Zn2+ Coordination in the DNA-Binding Domain of the AMT1 Transcription Factor from Candida glabrata. Biochemistry, 1994, 33, 9566-9577.	2.5	55
198	Diffraction anomalous fine structure: a new technique for probing local atomic environment. Journal of the American Chemical Society, 1993, 115, 6302-6311.	13.7	73

#	Article	IF	CITATIONS
199	X-ray absorption spectroscopy of oriented cytochrome oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1142, 240-252.	1.0	35
200	X-ray absorption spectroscopy of light elements in biological systems. Current Opinion in Structural Biology, 1993, 3, 780-784.	5.7	16
201	Nickel K-edge x-ray absorption fine structure of lithium nickel oxides. Journal of the American Chemical Society, 1993, 115, 4137-4144.	13.7	72
202	X-ray absorption spectroscopy of cuprous-thiolate clusters in proteins and model systems. Journal of the American Chemical Society, 1993, 115, 9498-9505.	13.7	148
203	Aldehyde ferredoxin oxidoreductase from the hyperthermophilic archaebacterium Pyrococcus furiosus contains a tungsten oxo-thiolate center. Journal of the American Chemical Society, 1992, 114, 3521-3523.	13.7	69
204	Characterization and thermal reactivity of oxidized organic sulphur forms in coals. Fuel, 1992, 71, 1255-1264.	6.4	66
205	XANES evidence for selective organic sulfur removal from Illinois No. 6 coal. Energy & Energy	5.1	12
206	Direct determination and quantification of sulfur forms in coals from the Argonne Premium Sample Program. Energy & Energ	5.1	175
207	Thermal reactivity of sulphur forms in coal. Fuel, 1991, 70, 396-402.	6.4	67
208	Direct determination and quantification of sulphur forms in heavy petroleum and coals. Fuel, 1990, 69, 945-949.	6.4	86
209	Chemistry of organically bound sulphur forms during the mild oxidation of coal. Fuel, 1990, 69, 1065-1067.	6.4	56
210	Sulfur K-Edge X-ray Absorption Spectroscopy of Petroleum Asphaltenes and Model Compounds. ACS Symposium Series, 1990, , 220-230.	0.5	4
211	Oriented x-ray absorption spectroscopy of membrane bound metalloproteins. Physica B: Condensed Matter, 1989, 158, 81-83.	2.7	13
212	Structure of the active site of sulfite oxidase. X-ray absorption spectroscopy of the molybdenum(IV), molybdenum(V), and molybdenum(VI) oxidation states. Biochemistry, 1989, 28, 5075-5080.	2.5	132
213	Sulfur K-edge x-ray absorption spectroscopy of petroleum asphaltenes and model compounds. Journal of the American Chemical Society, 1989, 111, 3182-3186.	13.7	255
214	Studies by electron paramagnetic resonance spectroscopy of xanthine oxidase enriched with molybdenum-95 and with molybdenum-97. Biochemistry, 1988, 27, 3603-3609.	2.5	87
215	X-ray crystallography and the spectroscopic imperative: The story of the [3Fe-4S] clusters. Trends in Biochemical Sciences, 1988, 13, 369-370.	7.5	19
216	Formation of the inhibitory complex of p-mercuribenzoate with xanthine oxidase, evaluation of hyperfine and quadrupole couplings of mercury to molybdenum(V) from the electron paramagnetic resonance spectrum, and structure of the complex. Biochemistry, 1983, 22, 5443-5452.	2.5	20

#	ARTICLE	IF.	CITATIONS
217	Reaction of arsenite ions with the molybdenum center of milk xanthine oxidase. Biochemistry, 1983, 22, 1013-1021.	2.5	43