Chun T Rim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11239283/publications.pdf

Version: 2024-02-01

41 3,463 25 27 papers citations h-index g-index

58 58 58 1934 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Plane-Type Receiving Coil With Minimum Number of Coils for Omnidirectional Wireless Power Transfer. IEEE Transactions on Power Electronics, 2020, 35, 6165-6174.	7.9	28
2	Optimal Dipole-Coil Ampere-Turns Design for Maximum Power Efficiency of IPT. IEEE Transactions on Power Electronics, 2020, 35, 7317-7327.	7.9	12
3	Coreless Transmitting Coils With Conductive Magnetic Shield for Wide-Range Ubiquitous IPT. IEEE Transactions on Power Electronics, 2019, 34, 2539-2552.	7.9	29
4	Autotuning Control System by Variation of Self-Inductance for Dynamic Wireless EV Charging With Small Air Gap. IEEE Transactions on Power Electronics, 2019, 34, 5165-5174.	7.9	39
5	Self-Inductance-Based Metal Object Detection With Mistuned Resonant Circuits and Nullifying Induced Voltage for Wireless EV Chargers. IEEE Transactions on Power Electronics, 2019, 34, 748-758.	7.9	81
6	A Modularized IPT With Magnetic Shielding for a Wide-Range Ubiquitous Wi-Power Zone. IEEE Transactions on Power Electronics, 2018, 33, 9669-9690.	7.9	39
7	Metal Object Detection System with Parallel-mistuned Resonant Circuits and Nullifying Induced Voltage for Wireless EV Chargers. , 2018, , .		18
8	Wireless Charging of Electric Vehicles. , 2018, , 1113-1137.		7
9	Six Degrees of Freedom Wide-Range Ubiquitous IPT for IoT by DQ Magnetic Field. IEEE Transactions on Power Electronics, 2017, 32, 8258-8276.	7.9	38
10	Wide-Range Adaptive IPT Using Dipole-Coils With a Reflector by Variable Switched Capacitance. IEEE Transactions on Power Electronics, 2017, 32, 8054-8070.	7.9	34
11	Metal object detection circuit with non-overlapped coils for wireless EV chargers. , 2016, , .		43
12	Living object detection system based on comb pattern capacitive sensor for wireless EV chargers. , $2016, \ldots$		26
13	Modern Advances in Wireless Power Transfer Systems for Roadway Powered Electric Vehicles. IEEE Transactions on Industrial Electronics, 2016, 63, 6533-6545.	7.9	607
14	Dipole-Coil-Based Wide-Range Inductive Power Transfer Systems for Wireless Sensors. IEEE Transactions on Industrial Electronics, 2016, 63, 3158-3167.	7.9	82
15	Static Regulated Multistage Semiactive LED Drivers for High-Efficiency Applications. IEEE Transactions on Power Electronics, 2016, 31, 6543-6552.	7.9	7
16	Six Degrees of Freedom Mobile Inductive Power Transfer by Crossed Dipole Tx and Rx Coils. IEEE Transactions on Power Electronics, 2016, 31, 3252-3272.	7.9	107
17	Versatile LED Drivers for Various Electronic Ballasts by Variable Switched Capacitor. IEEE Transactions on Power Electronics, 2016, 31, 1489-1502.	7.9	25
18	Application of Phasor Transformation to Static Analyses of LED Drivers. KAIST Research Series, 2016, , 105-128.	1.5	0

#	Article	IF	CITATIONS
19	General Unified Analyses of Two-Capacitor Inductive Power Transfer Systems: Equivalence of Current-Source SS and SP Compensations. IEEE Transactions on Power Electronics, 2015, 30, 6030-6045.	7.9	258
20	Generalized Models on Self-Decoupled Dual Pick-up Coils for Large Lateral Tolerance. IEEE Transactions on Power Electronics, 2015, 30, 6434-6445.	7.9	45
21	Gyrator-Based Analysis of Resonant Circuits in Inductive Power Transfer Systems. IEEE Transactions on Power Electronics, 2015, , 1-1.	7.9	44
22	Recent progress in developments of on-line electric vehicles. , 2015, , .		13
23	Coreless power supply rails compatible with both stationary and dynamic charging of electric vehicles. , 2015, , .		29
24	Uniform Power I-Type Inductive Power Transfer System With <italic>DQ</italic> -Power Supply Rails for On-Line Electric Vehicles. IEEE Transactions on Power Electronics, 2015, 30, 6446-6455.	7.9	121
25	DQ-quadrature power supply coil sets with large tolerances for wireless stationary EV chargers. , 2015, , .		11
26	Ultraslim S-Type Power Supply Rails for Roadway-Powered Electric Vehicles. IEEE Transactions on Power Electronics, 2015, 30, 6456-6468.	7.9	128
27	Temperature-Robust LC ³ Passive LED Drivers With Low THD, High Efficiency and PF, and Long Life. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 829-840.	5.4	26
28	The analysis of TRIAC dimming LED driver by variable switched capacitor for long life and high power-efficient applications. , 2015, , .		5
29	Advances in Wireless Power Transfer Systems for Roadway-Powered Electric Vehicles. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 18-36.	5.4	519
30	Innovative 5-m-Off-Distance Inductive Power Transfer Systems With Optimally Shaped Dipole Coils. IEEE Transactions on Power Electronics, 2015, 30, 817-827.	7.9	116
31	Influences of Spurious Conductors on Long Distance Inductive Power Transfer Systems. , 2014, , .		5
32	7m-off-long-distance extremely loosely coupled inductive power transfer systems using dipole coils. , 2014, , .		22
33	Trends of Wireless Power Transfer Systems for Roadway Powered Electric Vehicles. , 2014, , .		18
34	Self-decoupled dual pick-up coils with large lateral tolerance for roadway powered electric vehicles. , 2014, , .		2
35	Temperature-robust LC ³ LED driver with low THD, high efficiency, and long life. , 2014, , .		4
36	Two-Dimensional Inductive Power Transfer System for Mobile Robots Using Evenly Displaced Multiple Pickups. IEEE Transactions on Industry Applications, 2014, 50, 558-565.	4.9	45

#	Article	IF	CITATIONS
37	Generalized Active EMF Cancel Methods for Wireless Electric Vehicles. IEEE Transactions on Power Electronics, 2014, 29, 5770-5783.	7.9	149
38	Asymmetric Coil Sets for Wireless Stationary EV Chargers With Large Lateral Tolerance by Dominant Field Analysis. IEEE Transactions on Power Electronics, 2014, 29, 6406-6420.	7.9	217
39	New Cross-Segmented Power Supply Rails for Roadway-Powered Electric Vehicles. IEEE Transactions on Power Electronics, 2013, 28, 5832-5841.	7.9	162
40	Dynamics Characterization of the Inductive Power Transfer System for Online Electric Vehicles by Laplace Phasor Transform. IEEE Transactions on Power Electronics, 2013, 28, 5902-5909.	7.9	207
41	Unified General Phasor Transformation for AC Converters. IEEE Transactions on Power Electronics, 2011, 26, 2465-2475.	7.9	80