
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1123893/publications.pdf Version: 2024-02-01



Μενιλιί Υε

| #  | Article                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Improved Whole-Genome Sequence of <i>Fusarium meridionale</i> , the Fungal Pathogen Causing<br>Fusarium Head Blight in Rice. Molecular Plant-Microbe Interactions, 2022, 35, 85-89.                                                                                                                      | 1.4 | 1         |
| 2  | ATAC-seq reveals the landscape of open chromatin and cis-regulatory elements in the Phytophthora sojae genome. Molecular Plant-Microbe Interactions, 2022, , .                                                                                                                                           | 1.4 | 5         |
| 3  | Phytophthora sojae Transformation Based on the CRISPR/Cas9 System. Bio-protocol, 2022, 12, e4352.                                                                                                                                                                                                        | 0.2 | 4         |
| 4  | Wheat Straw Return Influences Soybean Root-Associated Bacterial and Fungal Microbiota in a<br>Wheat–Soybean Rotation System. Microorganisms, 2022, 10, 667.                                                                                                                                              | 1.6 | 4         |
| 5  | A new distinct geminivirus causes soybean stay-green disease. Molecular Plant, 2022, 15, 927-930.                                                                                                                                                                                                        | 3.9 | 17        |
| 6  | <i>Diaporthe</i> Diversity and Pathogenicity Revealed from a Broad Survey of Soybean Stem Blight in China. Plant Disease, 2022, 106, 2892-2903.                                                                                                                                                          | 0.7 | 4         |
| 7  | Transcription factor <scp>MoMsn2</scp> targets the putative <scp>3â€methylglutaconyl oA</scp><br>hydrataseâ€encoding gene <scp><i>MoAUH1</i></scp> to govern infectious growth via mitochondrial<br>fusion/fission balance in <i>Magnaporthe oryzae</i> . Environmental Microbiology, 2021, 23, 774-790. | 1.8 | 9         |
| 8  | Fg12 ribonuclease secretion contributes to <i>Fusarium graminearum</i> virulence and induces plant cell death. Journal of Integrative Plant Biology, 2021, 63, 365-377.                                                                                                                                  | 4.1 | 47        |
| 9  | Genome Analysis of Two Newly Emerged Potato Late Blight Isolates Sheds Light on Pathogen<br>Adaptation and Provides Tools for Disease Management. Phytopathology, 2021, 111, 96-107.                                                                                                                     | 1.1 | 9         |
| 10 | The bZIP transcription factor PsBZP32 is involved in cyst germination, oxidative stress response, and pathogenicity of Phytophthora sojae. Phytopathology Research, 2021, 3, .                                                                                                                           | 0.9 | 8         |
| 11 | Editorial: Genomics and Effectomics of Filamentous Plant Pathogens. Frontiers in Genetics, 2021, 12, 648690.                                                                                                                                                                                             | 1.1 | 2         |
| 12 | <i>Phytophthora sojae</i> effector Avr1d functions as an E2 competitor and inhibits ubiquitination<br>activity of GmPUB13 to facilitate infection. Proceedings of the National Academy of Sciences of the<br>United States of America, 2021, 118, .                                                      | 3.3 | 35        |
| 13 | Pythium huanghuaiense sp. nov. isolated from soybean: morphology, molecular phylogeny and pathogenicity. Biodiversity Data Journal, 2021, 9, e65227.                                                                                                                                                     | 0.4 | 2         |
| 14 | Development of LAMP Assays Using a Novel Target Gene for Specific Detection of <i>Pythium<br/>terrestris</i> , <i>Pythium spinosum</i> , and † <i>Candidatus</i> Pythium huanghuaiense'. Plant Disease,<br>2021, 105, 2888-2897.                                                                         | 0.7 | 3         |
| 15 | The <i>Phytophthora</i> effector Avh241 interacts with host NDR1â€like proteins to manipulate plant immunity. Journal of Integrative Plant Biology, 2021, 63, 1382-1396.                                                                                                                                 | 4.1 | 16        |
| 16 | First report of soybean stem blight caused by Diaporthe phaseolorum in Sichuan province, China.<br>Plant Disease, 2021, , .                                                                                                                                                                              | 0.7 | 1         |
| 17 | Genome Sequence Data of three formae speciales of Phytophthora vignae Causing Phytophthora Stem<br>Rot on different Vigna species. Plant Disease, 2021, , PDIS11202546A.                                                                                                                                 | 0.7 | 3         |
| 18 | Improved Whole-Genome Sequence of <i>Phytophthora capsici</i> Generated by Long-Read Sequencing.<br>Molecular Plant-Microbe Interactions, 2021, 34, 866-869.                                                                                                                                             | 1.4 | 9         |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Genome Sequence Resource of <i>Phomopsis longicolla</i> YC2-1, a Fungal Pathogen Causing<br>Phomopsis Stem Blight in Soybean. Molecular Plant-Microbe Interactions, 2021, 34, 842-844.                                                       | 1.4 | 6         |
| 20 | A CRISPR/Cas9â€mediated in situ complementation method for <i>Phytophthora sojae</i> mutants.<br>Molecular Plant Pathology, 2021, 22, 373-381.                                                                                               | 2.0 | 25        |
| 21 | Specific interaction of an RNA-binding protein with the 3′-UTR of its target mRNA is critical to oomycete sexual reproduction. PLoS Pathogens, 2021, 17, e1010001.                                                                           | 2.1 | 13        |
| 22 | Identification and characterization of L-type lectin receptor-like kinases involved in Glycine<br>max–Phytophthora sojae interaction. Planta, 2021, 254, 128.                                                                                | 1.6 | 2         |
| 23 | An atypical Phytophthora sojae RxLR effector manipulates host vesicle trafficking to promote infection. PLoS Pathogens, 2021, 17, e1010104.                                                                                                  | 2.1 | 9         |
| 24 | The Mevalonate Pathway Is Important for Growth, Spore Production, and the Virulence of Phytophthora sojae. Frontiers in Microbiology, 2021, 12, .                                                                                            | 1.5 | 5         |
| 25 | An Improved Method for the Identification of Soybean Resistance to Phytophthora sojae Applied to<br>Germplasm Resources from the Huanghuaihai and Dongbei Regions of China. Plant Disease, 2020, 104,<br>408-413.                            | 0.7 | 5         |
| 26 | N <i>-</i> glycosylation shields <i>Phytophthora sojae</i> apoplastic effector PsXEG1 from a specific<br>host aspartic protease. Proceedings of the National Academy of Sciences of the United States of<br>America, 2020, 117, 27685-27693. | 3.3 | 51        |
| 27 | A LAMP-assay-based specific microbiota analysis reveals community dynamics and potential<br>interactions of 13 major soybean root pathogens. Journal of Integrative Agriculture, 2020, 19,<br>2056-2063.                                     | 1.7 | 7         |
| 28 | Conserved Subgroups of the Plant-Specific RWP-RK Transcription Factor Family Are Present in Oomycete Pathogens. Frontiers in Microbiology, 2020, 11, 1724.                                                                                   | 1.5 | 11        |
| 29 | Prediction and Characterization of RXLR Effectors in <i>Pythium</i> Species. Molecular Plant-Microbe<br>Interactions, 2020, 33, 1046-1058.                                                                                                   | 1.4 | 34        |
| 30 | Identification of Resistance Genes to Phytophthora sojae in Domestic Soybean Cultivars from China<br>Using Particle Bombardment. Plant Disease, 2020, 104, 1888-1893.                                                                        | 0.7 | 3         |
| 31 | G protein α subunit suppresses sporangium formation through a serine/threonine protein kinase in<br>Phytophthora sojae. PLoS Pathogens, 2020, 16, e1008138.                                                                                  | 2.1 | 13        |
| 32 | Pathogenicity and fungicide sensitivity of <i>Pythium</i> and <i>Phytopythium</i> spp. associated with soybean in the Huangâ€Huai region of China. Plant Pathology, 2020, 69, 1083-1092.                                                     | 1.2 | 14        |
| 33 | Chitin synthase is involved in vegetative growth, asexual reproduction and pathogenesis of<br><i>Phytophthora capsici</i> and <i>Phytophthora sojae</i> . Environmental Microbiology, 2019, 21,<br>4537-4547.                                | 1.8 | 25        |
| 34 | Wheat Straw Return Influences Nitrogen-Cycling and Pathogen Associated Soil Microbiota in a<br>Wheat–Soybean Rotation System. Frontiers in Microbiology, 2019, 10, 1811.                                                                     | 1.5 | 36        |
| 35 | A loop-mediated isothermal amplification assay can rapidly diagnose soybean root-rot and damping-off<br>diseases caused by Pythium spinosum. Australasian Plant Pathology, 2019, 48, 553-562.                                                | 0.5 | 4         |
| 36 | Polymorphism in natural alleles of the avirulence gene Avr1c is associated with the host adaptation of Phytophthora sojae. Phytopathology Research, 2019, 1, .                                                                               | 0.9 | 8         |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Phytophthora sojae Effector PsAvh240 Inhibits Host Aspartic Protease Secretion to Promote<br>Infection. Molecular Plant, 2019, 12, 552-564.                                                                                                        | 3.9 | 60        |
| 38 | The WY domain in the Phytophthora effector PSR 1 is required for infection and RNA silencing suppression activity. New Phytologist, 2019, 223, 839-852.                                                                                            | 3.5 | 31        |
| 39 | Structural analysis of <i>Phytophthora</i> suppressor of RNA silencing 2 (PSR2) reveals a conserved modular fold contributing to virulence. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8054-8059. | 3.3 | 46        |
| 40 | A Phytophthora Effector Suppresses Trans-Kingdom RNAi to Promote Disease Susceptibility. Cell Host and Microbe, 2019, 25, 153-165.e5.                                                                                                              | 5.1 | 173       |
| 41 | The <i>Phytophthora sojae </i> <scp>RXLR</scp> effector Avh238 destabilizes soybean Type2<br>Gm <scp>ACS</scp> s to suppress ethylene biosynthesis and promote infection. New Phytologist, 2019,<br>222, 425-437.                                  | 3.5 | 63        |
| 42 | Rapid diagnosis of rice bakanae caused by <i>Fusarium fujikuroi</i> and <i>F. proliferatum</i> using loopâ€mediated isothermal amplification assays. Journal of Phytopathology, 2018, 166, 283-290.                                                | 0.5 | 11        |
| 43 | Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside<br>hydrolase 12 MAMP detection. Nature Communications, 2018, 9, 594.                                                                                | 5.8 | 142       |
| 44 | EumicrobeDBLite: a lightweight genomic resource and analytic platform for draft oomycete genomes.<br>Molecular Plant Pathology, 2018, 19, 227-237.                                                                                                 | 2.0 | 24        |
| 45 | The MADS-box Transcription Factor PsMAD1 Is Involved in Zoosporogenesis and Pathogenesis of Phytophthora sojae. Frontiers in Microbiology, 2018, 9, 2259.                                                                                          | 1.5 | 26        |
| 46 | Phytophthora methylomes are modulated by 6mA methyltransferases and associated with adaptive genome regions. Genome Biology, 2018, 19, 181.                                                                                                        | 3.8 | 61        |
| 47 | Genomeâ€wide identification of long nonâ€coding RNAs suggests a potential association with effector<br>gene transcription in <i>Phytophthora sojae</i> . Molecular Plant Pathology, 2018, 19, 2177-2186.                                           | 2.0 | 49        |
| 48 | Endophytic fungal communities associated with field-grown soybean roots and seeds in the<br>Huang-Huai region of China. PeerJ, 2018, 6, e4713.                                                                                                     | 0.9 | 35        |
| 49 | A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility. ELife, 2018, 7, .                                                                                                        | 2.8 | 60        |
| 50 | Distinct regions of the <i>Phytophthora</i> essential effector Avh238 determine its function in cell death activation and plant immunity suppression. New Phytologist, 2017, 214, 361-375.                                                         | 3.5 | 67        |
| 51 | A paralogous decoy protects <i>Phytophthora sojae</i> apoplastic effector PsXEG1 from a host inhibitor. Science, 2017, 355, 710-714.                                                                                                               | 6.0 | 236       |
| 52 | Rapid diagnosis of wheat head blight caused by Fusarium asiaticum using a loop-mediated isothermal<br>amplification assay. Australasian Plant Pathology, 2017, 46, 261-266.                                                                        | 0.5 | 11        |
| 53 | Rapid Diagnosis of Soya Bean Root Rot Caused by <i>Fusarium culmorum</i> Using a Loopâ€Mediated<br>Isothermal Amplification Assay. Journal of Phytopathology, 2017, 165, 249-256.                                                                  | 0.5 | 15        |
| 54 | A Phytophthora Effector Manipulates Host Histone Acetylation and Reprograms Defense Gene<br>Expression to Promote Infection. Current Biology, 2017, 27, 981-991.                                                                                   | 1.8 | 120       |

| #  | Article                                                                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Puf RNA-binding protein encoding gene PIM90 regulates the sexual and asexual life stages of the<br>litchi downy blight pathogen Peronophythora litchii. Fungal Genetics and Biology, 2017, 98, 39-45.                                                                                                                                     | 0.9 | 28        |
| 56 | Rapid detection of Colletotrichum gloeosporioides using a loop-mediated isothermal amplification assay. Australasian Plant Pathology, 2017, 46, 493-498.                                                                                                                                                                                    | 0.5 | 12        |
| 57 | An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nature<br>Communications, 2017, 8, 2051.                                                                                                                                                                                                                  | 5.8 | 84        |
| 58 | Pythium cedri sp. nov. (Pythiaceae, Pythiales) from southern China based on morphological and molecular characters. Phytotaxa, 2017, 309, 135.                                                                                                                                                                                              | 0.1 | 11        |
| 59 | Comparative Genomic Analysis among Four Representative Isolates of Phytophthora sojae Reveals<br>Genes under Evolutionary Selection. Frontiers in Microbiology, 2016, 7, 1547.                                                                                                                                                              | 1.5 | 20        |
| 60 | <scp>P</scp> s <scp>H</scp> int1, associated with the <scp>G</scp> â€protein α subunit <scp>PsGPA1</scp> ,<br>is required for the chemotaxis and pathogenicity of <i><scp>P</scp>hytophthora sojae</i> . Molecular<br>Plant Pathology, 2016, 17, 272-285.                                                                                   | 2.0 | 29        |
| 61 | Sequencing of the Litchi Downy Blight Pathogen Reveals It Is a <i>Phytophthora</i> Species With Downy Mildew-Like Characteristics. Molecular Plant-Microbe Interactions, 2016, 29, 573-583.                                                                                                                                                 | 1.4 | 73        |
| 62 | A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins. Nature Communications, 2016, 7, 11685.                                                                                                                                                        | 5.8 | 119       |
| 63 | Filamentous pathogen effectors interfering with small RNA silencing in plant hosts. Current Opinion in Microbiology, 2016, 32, 1-6.                                                                                                                                                                                                         | 2.3 | 26        |
| 64 | Bioinformatics Analysis Reveals Abundant Short Alpha-Helices as a Common Structural Feature of<br>Oomycete RxLR Effector Proteins. PLoS ONE, 2015, 10, e0135240.                                                                                                                                                                            | 1.1 | 16        |
| 65 | Differential regulation of defense-related proteins in soybean during compatible and incompatible<br>interactions between Phytophthora sojae and soybean by comparative proteomic analysis. Plant Cell<br>Reports, 2015, 34, 1263-1280.                                                                                                     | 2.8 | 15        |
| 66 | <scp>PsMPK7</scp> , a stressâ€associated mitogenâ€activated protein kinase ( <scp>MAPK</scp> ) in<br><i><scp>P</scp>hytophthora sojae</i> , is required for stress tolerance, reactive oxygenated species<br>detoxification, cyst germination, sexual reproduction and infection of soybean. Molecular Plant<br>Pathology, 2015, 16, 61-70. | 2.0 | 38        |
| 67 | Global Genome and Transcriptome Analyses of Magnaporthe oryzae Epidemic Isolate 98-06 Uncover<br>Novel Effectors and Pathogenicity-Related Genes, Revealing Gene Gain and Lose Dynamics in Genome<br>Evolution. PLoS Pathogens, 2015, 11, e1004801.                                                                                         | 2.1 | 148       |
| 68 | A <i>Phytophthora sojae</i> Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during<br>Soybean Infection and Is Recognized as a PAMP. Plant Cell, 2015, 27, 2057-2072.                                                                                                                                                            | 3.1 | 335       |
| 69 | The heat shock transcription factor <scp>P</scp> s <scp>HSF</scp> 1 of<br><scp><i>P</i></scp> <i>hytophthora sojae</i> is required for oxidative stress tolerance and<br>detoxifying the plant oxidative burst. Environmental Microbiology, 2015, 17, 1351-1364.                                                                            | 1.8 | 32        |
| 70 | The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix<br>Hydrolase Activity of Avr3b. PLoS Pathogens, 2015, 11, e1005139.                                                                                                                                                                            | 2.1 | 66        |
| 71 | Pleiotropic Function of the Putative Zinc-Finger Protein MoMsn2 in <i>Magnaporthe oryzae</i> .<br>Molecular Plant-Microbe Interactions, 2014, 27, 446-460.                                                                                                                                                                                  | 1.4 | 56        |
| 72 | <i>Phytophthora</i> Suppressor of RNA Silencing 2 Is a Conserved RxLR Effector that Promotes<br>Infection in Soybean and <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2014, 27,<br>1379-1389.                                                                                                                        | 1.4 | 101       |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Computational identification of novel microRNAs and targets in Glycine max. Molecular Biology Reports, 2014, 41, 4965-4975.                                                                                               | 1.0 | 7         |
| 74 | PsMPK1, an SLT2-type mitogen-activated protein kinase, is required for hyphal growth,<br>zoosporogenesis, cell wall integrity, and pathogenicity in Phytophthora sojae. Fungal Genetics and<br>Biology, 2014, 65, 14-24.  | 0.9 | 35        |
| 75 | Phylogenetic and transcriptional analysis of an expanded bZIP transcription factor family in<br>Phytophthora sojae. BMC Genomics, 2013, 14, 839.                                                                          | 1.2 | 30        |
| 76 | Gene Duplication and Fragment Recombination Drive Functional Diversification of a Superfamily of Cytoplasmic Effectors in Phytophthora sojae. PLoS ONE, 2013, 8, e70036.                                                  | 1.1 | 46        |
| 77 | The RxLR effector Avh241 from <i>Phytophthora sojae</i> requires plasma membrane localization to induce plant cell death. New Phytologist, 2012, 196, 247-260.                                                            | 3.5 | 151       |
| 78 | A Myb Transcription Factor of Phytophthora sojae, Regulated by MAP Kinase PsSAK1, Is Required for<br>Zoospore Development. PLoS ONE, 2012, 7, e40246.                                                                     | 1.1 | 33        |
| 79 | Development of a loop-mediated isothermal amplification assay for detection of Phytophthora sojae.<br>FEMS Microbiology Letters, 2012, 334, 27-34.                                                                        | 0.7 | 83        |
| 80 | Characterization of intronic structures and alternative splicing in Phytophthora sojae by<br>comparative analysis of expressed sequence tags and genomic sequences. Canadian Journal of<br>Microbiology, 2011, 57, 84-90. | 0.8 | 19        |
| 81 | Microarray profiling reveals microRNAs involving soybean resistance to <i>Phytophthora sojae</i> .<br>Genome, 2011, 54, 954-958.                                                                                          | 0.9 | 56        |
| 82 | Genome-wide identification of Phytophthora sojae SNARE genes and functional characterization of the conserved SNARE PsYKT6. Fungal Genetics and Biology, 2011, 48, 241-251.                                               | 0.9 | 27        |
| 83 | Transcriptional Programming and Functional Interactions within the <i>Phytophthora sojae</i> RXLR<br>Effector Repertoire A Â. Plant Cell, 2011, 23, 2064-2086.                                                            | 3.1 | 455       |
| 84 | Two Host Cytoplasmic Effectors Are Required for Pathogenesis of <i>Phytophthora sojae</i> by<br>Suppression of Host Defenses  Â. Plant Physiology, 2011, 155, 490-501.                                                    | 2.3 | 100       |
| 85 | Digital Gene Expression Profiling of the <i>Phytophthora sojae</i> Transcriptome. Molecular<br>Plant-Microbe Interactions, 2011, 24, 1530-1539.                                                                           | 1.4 | 119       |