Indranil Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1123885/publications.pdf Version: 2024-02-01

INDRANIL BANEDIEE

#	Article	IF	CITATIONS
1	Gum tragacanth modified nano-hydroxyapatite: An angiogenic- osteogenic biomaterial for bone tissue engineering. Ceramics International, 2022, 48, 14672-14683.	4.8	10
2	Near-Infrared Light Activatable Two-Dimensional Nanomaterials for Theranostic Applications: A Comprehensive Review. ACS Applied Nano Materials, 2022, 5, 1719-1733.	5.0	13
3	Recent Progress in Red Blood Cells-Derived Particles as Novel Bioinspired Drug Delivery Systems: Challenges and Strategies for Clinical Translation. Frontiers in Chemistry, 2022, 10, 905256.	3.6	16
4	Synthesis of novel poly (vinyl alcohol)/tamarind gum/bentonite-based composite films for drug delivery applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126043.	4.7	28
5	Cobalt doped nano-hydroxyapatite incorporated gum tragacanth-alginate beads as angiogenic-osteogenic cell encapsulation system for mesenchymal stem cell based bone tissue engineering. International Journal of Biological Macromolecules, 2021, 179, 101-115.	7.5	30
6	Effect of Biodegradable Hydrophilic and Hydrophobic Emulsifiers on the Oleogels Containing Sunflower Wax and Sunflower Oil. Gels, 2021, 7, 133.	4.5	20
7	Upconversion nanoparticle incorporated oleogel as probable skin tissue imaging agent. Chemical Engineering Journal, 2020, 379, 122272.	12.7	16
8	Silanization improves biocompatibility of graphene oxide. Materials Science and Engineering C, 2020, 110, 110647.	7.3	41
9	Graphene oxide reinforced nanocomposite oleogels improves corneal permeation of drugs. Journal of Drug Delivery Science and Technology, 2020, 60, 102024.	3.0	10
10	Analysis of heart rate variability to understand the effect of cannabis consumption on Indian male paddy-field workers. Biomedical Signal Processing and Control, 2020, 62, 102072.	5.7	10
11	Up-conversion study of CaF2 based oxy-fluoride core-shell particulate nano-glass ceramics via sol-gel method: Effect of Yb3+ concentration and cell viability study. Optik, 2020, 222, 165304.	2.9	4
12	Graphene Oxide Increases Corneal Permeation of Ciprofloxacin Hydrochloride from Oleogels: A Study with Cocoa Butter-Based Oleogels. Gels, 2020, 6, 43.	4.5	5
13	Facile transdermal delivery of upconversion nanoparticle by iontophoresis-responsive magneto-upconversion oleogel. Nano Express, 2020, 1, 010012.	2.4	4
14	Oleogels Based on Palmitic Acid and Safflower Oil: Novel Formulations for Ocular Drug Delivery of Voriconazole. European Journal of Lipid Science and Technology, 2020, 122, 1900288.	1.5	8
15	Effect of addition of B2O3 to the sol-gel synthesized 45S5 bioglass. Journal of the Australian Ceramic Society, 2020, 56, 1309-1322.	1.9	7
16	Doxorubicin Loaded Green Synthesized Nanoceria Decorated Functionalized Graphene Nanocomposite for Cancer-Specific Drug Release. Journal of Cluster Science, 2019, 30, 1565-1582.	3.3	16
17	Iontophoretic drug delivery systems. , 2019, , 393-420.		5
18	Green synthesized amino-PEGylated silver decorated graphene nanoplatform as a tumor-targeted controlled drug delivery system. SN Applied Sciences, 2019, 1, 1.	2.9	23

#	Article	IF	CITATIONS
19	Keratinocytes are mechanoresponsive to the microflowâ€induced shear stress. Cytoskeleton, 2019, 76, 209-218.	2.0	17
20	Carrageenan: A Wonder Polymer from Marine Algae for Potential Drug Delivery Applications. Current Pharmaceutical Design, 2019, 25, 1172-1186.	1.9	62
21	Development and physicochemical characterization of doxorubicin-encapsulated hydroxyapatite–polyvinyl alcohol nanocomposite for repair of osteosarcoma-affected bone tissues. Comptes Rendus Chimie, 2019, 22, 46-57.	0.5	26
22	Wireless speech control system for robotic arm. International Journal of Biomedical Engineering and Technology, 2019, 30, 344.	0.2	0
23	Reinforcing effect of graphene oxide reinforcement on the properties of poly (vinyl alcohol) and carboxymethyl tamarind gum based phase-separated film. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81, 61-71.	3.1	33
24	Whiteâ€lightâ€emitting NaYF ₄ Nanoplatform for NIR Upconversionâ€mediated Photodynamic Therapy and Bioimaging. ChemNanoMat, 2018, 4, 583-595.	2.8	20
25	An Insight on the Swelling, Viscoelastic, Electrical, and Drug Release Properties of Gelatin–Carboxymethyl Chitosan Hydrogels. Polymer-Plastics Technology and Engineering, 2018, 57, 404-416.	1.9	6
26	Understanding the Effect of Tamarind Gum Proportion on the Properties of Tamarind Gum-Based Hydroethanolic Physical Hydrogels. Polymer-Plastics Technology and Engineering, 2018, 57, 540-547.	1.9	10
27	Rareâ€earthâ€doped SiO ₂ â€CaF ₂ glass ceramic nanoâ€particle with upconversion properties. International Journal of Applied Ceramic Technology, 2018, 15, 223-231.	2.1	4
28	Photo-triggered destabilization of nanoscopic vehicles by dihydroindolizine for enhanced anticancer drug delivery in cervical carcinoma. Colloids and Surfaces B: Biointerfaces, 2018, 162, 202-211.	5.0	31
29	NIR-Light-Active ZnO-Based Nanohybrids for Bacterial Biofilm Treatment. ACS Omega, 2018, 3, 10877-10885.	3.5	37
30	Osteoblastâ€Derived Giant Plasma Membrane Vesicles Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells. Advanced Biology, 2018, 2, 1800093.	3.0	6
31	Anionic Dinuclear Oxidovanadium(IV) Complexes with Azo Functionalized Tridentate Ligands and μ-Ethoxido Bridge Leading to an Unsymmetric Twisted Arrangement: Synthesis, X-ray Structure, Magnetic Properties, and Cytotoxicity. Inorganic Chemistry, 2018, 57, 5767-5781.	4.0	33
32	Preparation, Characterization and Assessment of the Novel Gelatin–tamarind Gum/Carboxymethyl Tamarind Gum-Based Phase-Separated Films for Skin Tissue Engineering Applications. Polymer-Plastics Technology and Engineering, 2017, 56, 141-152.	1.9	17
33	Biological and mechanical evaluation of poly(lactic-co-glycolic acid)-based composites reinforced with 1D, 2D and 3D carbon biomaterials for bone tissue regeneration. Biomedical Materials (Bristol), 2017, 12, 025012.	3.3	25
34	Synthesis and characterization of polyvinyl alcohol- carboxymethyl tamarind gum based composite films. Carbohydrate Polymers, 2017, 165, 159-168.	10.2	43
35	Gum tragacanth–alginate beads as proangiogenic–osteogenic cell encapsulation systems for bone tissue engineering. Journal of Materials Chemistry B, 2017, 5, 4177-4189.	5.8	43
36	Synthesis, structure and cytotoxicity of a series of Dioxidomolybdenum(VI) complexes featuring Salan ligands. Journal of Inorganic Biochemistry, 2017, 172, 110-121.	3.5	28

#	Article	IF	CITATIONS
37	Magnetic nanoparticle incorporated oleogel as iontophoretic drug delivery system. Colloids and Surfaces B: Biointerfaces, 2017, 157, 118-129.	5.0	34
38	Synthesis and Assessment of Novel Gelatin–Chitosan Lactate Cohydrogels for Controlled Delivery and Tissue Engineering Applications. Polymer-Plastics Technology and Engineering, 2017, 56, 1457-1467.	1.9	7
39	Reinforcing the inner phase of the filled hydrogels with CNTs alters drug release properties and human keratinocyte morphology: A study on the gelatin- tamarind gum filled hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 538-548.	3.1	22
40	Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids and Surfaces B: Biointerfaces, 2017, 150, 352-361.	5.0	151
41	Effect of Span 60 on the Microstructure, Crystallization Kinetics, and Mechanical Properties of Stearic Acid Oleogels: An Inâ€Đepth Analysis. Journal of Food Science, 2016, 81, E380-7.	3.1	43
42	Effect of Polysaccharides on the Properties of the Mucoadhesive Poly(Vinyl Alcohol) Multicore–Shell Microparticles. Polymer-Plastics Technology and Engineering, 2016, 55, 879-888.	1.9	1
43	Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications. International Journal of Biological Macromolecules, 2016, 93, 1499-1506.	7.5	104
44	Gelatin and amylopectin-based phase-separated hydrogels: An in-depth analysis of the swelling, mechanical, electrical and drug release properties. Iranian Polymer Journal (English Edition), 2016, 25, 799-810.	2.4	11
45	Alginate Bead Based Hexagonal Close Packed 3D Implant for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 32132-32145.	8.0	37
46	Groundnut oil based emulsion gels for passive and iontophoretic delivery of therapeutics. Designed Monomers and Polymers, 2016, 19, 297-308.	1.6	12
47	Effect of Tween 20 on the Properties of Stearate Oleogels: an inâ€Depth Analysis. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 711-719.	1.9	31
48	Substrate stiffness does affect the fate of human keratinocytes. RSC Advances, 2016, 6, 3539-3551.	3.6	23
49	Development of soy lecithin based novel self-assembled emulsion hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 55, 250-263.	3.1	27
50	Effect of mechanical and electrical behavior of gelatin hydrogels on drug release and cell proliferation. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53, 174-186.	3.1	32
51	Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application. Materials Science and Engineering C, 2016, 58, 648-658.	7.3	110
52	Novel organogel based lyotropic liquid crystal physical gels for controlled delivery applications. European Polymer Journal, 2015, 68, 326-337.	5.4	16
53	Development and characterization of gelatin-tamarind gum/carboxymethyl tamarind gum based phase-separated hydrogels: a comparative study. Designed Monomers and Polymers, 2015, 18, 434-450.	1.6	20
54	Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion. Ceramics International, 2015, 41, 11323-11333.	4.8	90

#	Article	IF	CITATIONS
55	Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. International Journal of Biological Macromolecules, 2015, 75, 409-417.	7.5	192
56	Physical and mechanical properties of sunflower oil and synthetic polymers based bigels for the delivery of nitroimidazole antibiotic – A therapeutic approach for controlled drug delivery. European Polymer Journal, 2015, 64, 253-264.	5.4	55
57	Characterization of gelatin–agar based phase separated hydrogel, emulgel and bigel: a comparative study. Journal of Materials Science: Materials in Medicine, 2015, 26, 118.	3.6	49
58	Synthesis and characterization of novel dual environment-responsive hydrogels of Hydroxyethyl methacrylate and Methyl cellulose. Designed Monomers and Polymers, 2015, 18, 367-377.	1.6	9
59	Evaluation extracellular matrix–chitosan composite films for wound healing application. Journal of Materials Science: Materials in Medicine, 2015, 26, 220.	3.6	9
60	Nickel doped nanohydroxyapatite: vascular endothelial growth factor inducing biomaterial for bone tissue engineering. RSC Advances, 2015, 5, 72515-72528.	3.6	30
61	Development and characterization of gelatinâ€based hydrogels, emulsion hydrogels, and bigels: A comparative study. Journal of Applied Polymer Science, 2015, 132, .	2.6	39
62	Stearic acid based oleogels: A study on the molecular, thermal and mechanical properties. Materials Science and Engineering C, 2015, 48, 688-699.	7.3	121
63	Stearate organogel–gelatin hydrogel based bigels: Physicochemical, thermal, mechanical characterizations and in vitro drug delivery applications. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 43, 1-17.	3.1	87
64	Core–shell-type organogel–alginate hybrid microparticles: A controlled delivery vehicle. Chemical Engineering Journal, 2015, 264, 134-145.	12.7	21
65	Molecular docking and interactions of pueraria tuberosa with vascular endothelial growth factor receptors. Indian Journal of Pharmaceutical Sciences, 2015, 77, 439.	1.0	13
66	Designing of a dual channel impedance analyzer for biological measurements. , 2014, , .		0
67	Finger movement based attender calling system for ICU patient management and rehabilitation. , 2014, ,		3
68	Preparation and characterization of novel carbopol based bigels for topical delivery of metronidazole for the treatment of bacterial vaginosis. Materials Science and Engineering C, 2014, 44, 151-158.	7.3	120
69	Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 123, 582-592.	5.0	119
70	Organogels as Matrices for Controlled Drug Delivery: A Review on the Current State. Soft Materials, 2014, 12, 47-72.	1.7	104
71	Encapsulation of vegetable organogels for controlled delivery applications. Designed Monomers and Polymers, 2013, 16, 366-376.	1.6	24
72	Wound pH-Responsive Sustained Release of Therapeutics from a Poly(NIPAAm-co-AAc) Hydrogel. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 111-132.	3.5	46

#	Article	IF	CITATIONS
73	Caprine (Goat) Collagen: A Potential Biomaterial for Skin Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 355-373.	3.5	33
74	Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultradispersed nanoconjugates for bimodal imaging. Nanoscale, 2011, 3, 1653.	5.6	115
75	Development of phosphonate modified Fe(1a^'x)MnxFe2O4 mixed ferrite nanoparticles: Novel peroxidase mimetics in enzyme linked immunosorbent assay. Talanta, 2011, 86, 337-348.	5.5	39
76	Enzymatically crosslinked carboxymethyl–chitosan/gelatin/nano-hydroxyapatite injectable gels for in situ bone tissue engineering application. Materials Science and Engineering C, 2011, 31, 1295-1304.	7.3	103
77	Synthesis, characterization, and in vitro biological evaluation of highly stable diversely functionalized superparamagnetic iron oxide nanoparticles. Journal of Nanoparticle Research, 2011, 13, 4173-4188.	1.9	30
78	PLGA Microspheres Incorporated Gelatin Scaffold: Microspheres Modulate Scaffold Properties. International Journal of Biomaterials, 2009, 2009, 1-9.	2.4	36
79	Association between inflammatory gene polymorphisms and coronary artery disease in an Indian population. Journal of Thrombosis and Thrombolysis, 2009, 27, 88-94.	2.1	47
80	Sustained release of antibiotic from polyurethane coated implant materials. Journal of Materials Science: Materials in Medicine, 2009, 20, 213-221.	3.6	46
81	Stimulation of murine B and T lymphocytes by native and heat-denatured Abrus agglutinin. Immunobiology, 2009, 214, 227-234.	1.9	13
82	Inflammatory system gene polymorphism and the risk of stroke: A case–control study in an Indian population. Brain Research Bulletin, 2008, 75, 158-165.	3.0	82
83	Association of gene polymorphism with genetic susceptibility to stroke in Asian populations: a meta-analysis. Journal of Human Genetics, 2007, 52, 205-219.	2.3	77
84	Eggshell Membrane Protein Modified Silk Fibroin-Poly Vinyl Alcohol Scaffold for Bone Tissue Engineering: <i>In Vitro</i> and <i>In Vivo</i> Study. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 32, 69-81.	0.5	9