Richard F Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11238618/publications.pdf

Version: 2024-02-01

146 19,656 61 131 g-index

153 153 153 153 8889

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Habituation: A model phenomenon for the study of neuronal substrates of behavior Psychological Review, 1966, 73, 16-43.	3.8	2,294
2	Habituation: A dual-process theory Psychological Review, 1970, 77, 419-450.	3.8	1,950
3	Habituation revisited: An updated and revised description of the behavioral characteristics of habituation. Neurobiology of Learning and Memory, 2009, 92, 135-138.	1.9	1,167
4	Hippocampus and trace conditioning of the rabbit's classically conditioned nictitating membrane response Behavioral Neuroscience, 1986, 100, 729-744.	1.2	680
5	Neural Substrates of Eyeblink Conditioning: Acquisition and Retention. Learning and Memory, 2003, 10, 427-455.	1.3	539
6	Progesterone receptors: Form and function in brain. Frontiers in Neuroendocrinology, 2008, 29, 313-339.	5.2	531
7	Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response. I. The hippocampus. Brain Research, 1978, 145, 323-346.	2.2	530
8	Hippocampectomy impairs the memory of recently, but not remotely, acquired trace eyeblink conditioned responses Behavioral Neuroscience, 1995, 109, 195-203.	1.2	475
9	Behavioral stress impairs long-term potentiation in rodent hippocampus. Behavioral and Neural Biology, 1987, 48, 138-149.	2.2	432
10	Importance of the Intracellular Domain of NR2 Subunits for NMDA Receptor Function In Vivo. Cell, 1998, 92, 279-289.	28.9	419
11	Deficient Cerebellar Long-Term Depression, Impaired Eyeblink Conditioning, and Normal Motor Coordination in GFAP Mutant Mice. Neuron, 1996, 16, 587-599.	8.1	415
12	Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKC \hat{I}^3 mutant mice. Cell, 1995, 83, 1233-1242.	28.9	410
13	The search for the engram American Psychologist, 1976, 31, 209-227.	4.2	408
14	Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Research, 1984, 291, 125-136.	2.2	376
15	Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Research, 1985, 359, 120-130.	2.2	355
16	The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature, 1999, 402, 294-296.	27.8	347
17	Habituation: A history. Neurobiology of Learning and Memory, 2009, 92, 127-134.	1.9	337
18	Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse, 1989, 3, 225-233.	1.2	324

#	Article	IF	CITATIONS
19	In Search of Memory Traces. Annual Review of Psychology, 2005, 56, 1-23.	17.7	323
20	Mammalian Brain Substrates of Aversive Classical Conditioning. Annual Review of Psychology, 1993, 44, 317-342.	17.7	272
21	The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. Bulletin of the Psychonomic Society, 1981, 18, 103-105.	0.2	255
22	Inhibitory Cerebello-Olivary Projections and Blocking Effect in Classical Conditioning. Science, 1998, 279, 570-573.	12.6	254
23	Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6498-6503.	7.1	241
24	Modeling the neural substrates of associative learning and memory: A computational approach Psychological Review, 1987, 94, 176-191.	3.8	218
25	Trace conditioning: Abolished by cerebellar nuclear lesions but not lateral cerebellar cortex aspirations. Brain Research, 1985, 348, 249-260.	2.2	178
26	Classical conditioning of the rabbit eyelid response with a mossy-fiber stimulation CS: I. Pontine nuclei and middle cerebellar peduncle stimulation Behavioral Neuroscience, 1986, 100, 878-887.	1.2	166
27	Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response. Brain Research, 1982, 242, 190-193.	2.2	158
28	Superior cerebellar peduncle lesions selectively abolish the ipsilateral classically conditioned nictitating membrane/eyelid response of the rabbit. Brain Research, 1982, 244, 347-350.	2.2	141
29	Increased responsivity of dentate granule cells during nictitating membrane response conditioning in rabbit. Behavioural Brain Research, 1984, 12, 145-154.	2.2	133
30	Associative Learning. International Review of Neurobiology, 1997, 41, 151-189.	2.0	132
31	Long-term potentiation is associated with increased [3H]AMPA binding in rat hippocampus. Brain Research, 1992, 573, 228-234.	2.2	131
32	Mechanisms of efferent neuronal control of the reflex nictitating membrane response in rabbit (Oryctolagus cuniculus) Journal of Comparative and Physiological Psychology, 1976, 90, 411-423.	1.8	130
33	Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response. II: Septum and mammillary bodies. Brain Research, 1978, 156, 293-314.	2.2	129
34	Allopregnanolone restores hippocampal-dependent learning and memory and neural progenitor survival in aging 3xTgAD and nonTg mice. Neurobiology of Aging, 2012, 33, 1493-1506.	3.1	128
35	Cerebellar cortical inhibition and classical eyeblink conditioning. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1592-1597.	7.1	125
36	Unpredictable and uncontrollable stress impairs neuronal plasticity in the rat hippocampus. Brain Research Bulletin, 1990, 24, 663-667.	3.0	120

3

#	Article	IF	CITATIONS
37	Effect of the interstimulus (CS–UCS) interval on hippocampal unit activity during classical conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus) Journal of Comparative and Physiological Psychology, 1980, 94, 201-215.	1.8	116
38	Concomitant classical conditioning of the rabbit nictitating membrane and eyelid responses: Correlations and implications. Physiology and Behavior, 1982, 28, 769-775.	2.1	115
39	Acute stress impairs (or induces) synaptic long-term potentiation (LTP) but does not affect paired-pulse facilitation in the stratum radiatum of rat hippocampus. Synapse, 1992, 11, 262-265.	1.2	114
40	A Dual-Process Theory of Habituation: Theory and Behavior. , 1973, , 239-271.		108
41	Hippocampal lesions impair contextual fear conditioning in two strains of mice Behavioral Neuroscience, 1996, 110, 1177-1180.	1.2	107
42	Hippocampal unit-behavior correlations during classical conditioning. Brain Research, 1980, 193, 229-248.	2.2	106
43	The effect of temporal single alternation on learned increases in hippocampal unit activity in classical conditioning of the rabbit nictitating membrane response. Physiological Psychology, 1979, 7, 345-351.	0.8	99
44	Reciprocal anatomical connections between hippocampus and subiculum in the rabbit: Evidence for subicular innervation of regio superior. Brain Research, 1980, 183, 265-276.	2.2	97
45	Parallel augmentation of hippocampal long-term potentiation, theta rhythm, and contextual fear conditioning in water-deprived rats Behavioral Neuroscience, 1994, 108, 44-56.	1.2	97
46	Tone-induced changes in excitability of abducens motoneurons and of the reflex path of nictitating membrane response in rabbit (Oryctolagus cuniculus) Journal of Comparative and Physiological Psychology, 1976, 90, 424-434.	1.8	92
47	Classical conditioning in 3-, 30-, and 45-month-old rabbits: Behavioral learning and hippocampal unit activity. Neurobiology of Aging, 1987, 8, 101-108.	3.1	91
48	Cerebellar stimulation as an unconditioned stimulus in classical conditioning Behavioral Neuroscience, 1992, 106, 739-750.	1.2	87
49	Selective increase of AMPA binding to the AMPA/quisqualate receptor in the hippocampus in response to acute stress. Brain Research, 1991, 559, 168-171.	2.2	85
50	The Nature of Reinforcement in Cerebellar Learning. Neurobiology of Learning and Memory, 1998, 70, 150-176.	1.9	85
51	Effects of stimulus frequency and intensity on habituation and sensitization in acute spinal cat. Physiology and Behavior, 1969, 4, 383-388.	2.1	81
52	Neuronal responses of the rabbit brainstem during performance of the classically conditioned nictitating membrane (NM)/eyelid response. Brain Research, 1983, 271, 73-88.	2.2	79
53	Time-dependent blockade of STP and LTP in hippocampal slices following acute stress in mice. Neuroscience Letters, 1997, 233, 41-44.	2.1	79
54	Cerebellar Brain-Derived Neurotrophic Factor–TrkB Defect Associated with Impairment of Eyeblink Conditioning in <i>Stargazer</i> Mutant Mice. Journal of Neuroscience, 1998, 18, 6990-6999.	3.6	78

#	Article	IF	CITATIONS
55	Classical conditioning selectively increases AMPA receptor binding in rabbit hippocampus. Brain Research, 1991, 559, 331-336.	2.2	77
56	Neuronal plasticity recorded from cat hippocampus during classical conditioning. Brain Research, 1979, 163, 339-343.	2.2	74
57	Role of auditory cortex in reflex head orientation by cats to auditory stimuli Journal of Comparative and Physiological Psychology, 1963, 56, 996-1002.	1.8	73
58	Effects of ipsilateral rostral pontine reticular lesions on retention of classically conditioned nictitating membrane and eyelid responses. Physiological Psychology, 1981, 9, 335-339.	0.8	73
59	Learning-dependent neuronal responses recorded from limbic system brain structures during classical conditioning. Physiological Psychology, 1980, 8, 155-167.	0.8	72
60	Evidence of plasticity in the pontocerebellar conditioned stimulus pathway during classical conditioning of the eyeblink response in the rabbit Behavioral Neuroscience, 1998, 112, 267-285.	1.2	71
61	Brain Mechanisms of Extinction of the Classically Conditioned Eyeblink Response. Learning and Memory, 2004, 11, 517-524.	1.3	67
62	Locus coeruleus lesions and resistance to extinction of a classically conditioned response: Involvement of the neocortex and hippocampus. Brain Research, 1982, 245, 239-249.	2.2	63
63	Neuronal unit activity in the abducens nucleus during classical conditioning of the nictitating membrane response in the rabbit (Oryctolagus cuniculus) Journal of Comparative and Physiological Psychology, 1979, 93, 595-609.	1.8	61
64	Are memory traces localized or distributed?. Neuropsychologia, 1991, 29, 571-582.	1.6	61
65	Long-Term Storage of an Associative Memory Trace in the Cerebellum Behavioral Neuroscience, 2005, 119, 526-537.	1.2	60
66	Classical conditioning of the rabbit eyelid response with mossy fiber stimulation as the conditioned stimulus. Bulletin of the Psychonomic Society, 1985, 23, 245-248.	0.2	59
67	Conditioning using a cerebral cortical conditioned stimulus is dependent on the cerebellum and brain stem circuitry Behavioral Neuroscience, 1992, 106, 509-517.	1.2	59
68	Lidocaine infusion in a critical region of cerebellum completely prevents learning of the conditioned eyeblink response Behavioral Neuroscience, 1993, 107, 882-886.	1,2	58
69	Bilateral lesions of the interpositus nucleus completely prevent eyeblink conditioning in Purkinje cell-degeneration mutant mice Behavioral Neuroscience, 1999, 113, 204-210.	1.2	55
70	Role of the Hippocampus in Classical Conditioning of Aversive and Appetitive Behaviors. , 1986 , , $203-239$.		54
71	Inactivation of brainstem motor nuclei blocks expression but not acquisition of the rabbit's classically conditioned eyeblink response Behavioral Neuroscience, 1996, 110, 219-227.	1.2	54
72	Behavioral correlates of evoked activity recorded from association areas of the cerebral cortex Journal of Comparative and Physiological Psychology, 1965, 60, 329-339.	1.8	53

#	Article	IF	CITATIONS
73	Learning Induces a CDC2-Related Protein Kinase, KKIAMRE. Journal of Neuroscience, 1999, 19, 9530-9537.	3.6	53
74	Classical conditioning of the eyelid response in rabbits as a model system for the study of brain mechanisms of learning and memory in aging. Experimental Aging Research, 1985, 11, 109-122.	1.2	52
75	A nonrecoverable learning deficit. Physiological Psychology, 1984, 12, 103-110.	0.8	50
76	Habituation and sensitization of spinal interneuron activity in acute spinal cat. Brain Research, 1969, 14, 521-525.	2.2	48
77	Neuronal substrates of simple associative learning: classical conditioning. Trends in Neurosciences, 1983, 6, 270-275.	8.6	47
78	$17\hat{l}^2$ -estradiol modifies stress-induced and age-related changes in hippocampal synaptic plasticity Behavioral Neuroscience, 2008, 122, 301-309.	1.2	47
79	Cerebellar cortical lesions and reacquisition in classical conditioning of the nictitating membrane response in rabbits. Brain Research, 1993, 608, 67-77.	2.2	46
80	Learning- and cerebellum-dependent neuronal activity in the lateral pontine nucleus Behavioral Neuroscience, 2000, 114, 254-261.	1.2	46
81	Eye-blink conditioning is associated with changes in synaptic ultrastructure in the rabbit interpositus nuclei. Learning and Memory, 2007, 14, 385-389.	1.3	45
82	Projections from the auditory cortex to the pontine nuclei in the rabbit. Behavioural Brain Research, 1993, 56, 23-30.	2.2	43
83	Are eyeblink responses to tone in the decerebrate, decerebellate rabbit conditioned responses?. Behavioural Brain Research, 1991, 44, 27-34.	2.2	41
84	The role of the cerebellar interpositus nucleus in short and long term memory for trace eyeblink conditioning Behavioral Neuroscience, 2009, 123, 54-61.	1.2	41
85	Classical conditioning of the hindlimb flexion reflex in the acute spinal cat. Learning and Behavior, 1967, 8, 213-214.	0.6	40
86	Regulation of Hippocampal Synaptic Plasticity by Estrogen and Progesterone. Vitamins and Hormones, 2010, 82, 219-239.	1.7	40
87	Impaired Eye-Blink Conditioning in <i>waggler</i> , a Mutant Mouse With Cerebellar BDNF Deficiency. Learning and Memory, 1998, 5, 355-364.	1.3	40
88	Hippocampal cellular plasticity during extinction of classically conditioned nictitating membrane behavior. Behavioural Brain Research, 1982, 4, 63-76.	2.2	39
89	Neurobiological Substrates of Classical Conditioning across the Life Span. Annals of the New York Academy of Sciences, 1990, 608, 150-178.	3.8	39
90	Integrating Behavioral and Biological Models of Classical Conditioning. Psychology of Learning and Motivation - Advances in Research and Theory, 1989, , 109-156.	1.1	37

#	Article	IF	CITATIONS
91	Inhibiting the Expression of a Classically Conditioned Behavior Prevents Its Extinction. Journal of Neuroscience, 2003, 23, 10577-10584.	3.6	36
92	The Search for the Engram, II., 1980, , 172-222.		36
93	A Dual-Process Theory of Habituation: Neural Mechanisms. , 1973, , 175-205.		36
94	Cerebellar lesions abolish an avoidance response in rabbit. Behavioral and Neural Biology, 1985, 44, 221-227.	2.2	35
95	Opioid antagonist eliminates the stress-induced impairment of long-term potentiation (LTP). Brain Research, 1990, 506, 316-318.	2.2	34
96	Learning of a hippocampal-dependent conditioning task changes the binding properties of AMPA receptors in rabbit hippocampus. Behavioral and Neural Biology, 1992, 58, 222-231.	2.2	34
97	Classical conditioning with electrical stimulation of cerebellum as both conditioned and unconditioned stimulus Behavioral Neuroscience, 1996, 110, 914-921.	1.2	31
98	Auditory signal detection and decision processes in the nervous system Journal of Comparative and Physiological Psychology, 1982, 96, 328-331.	1.8	30
99	Delayed acquisition of eyeblink conditioning in aged F1 hybrid (Fischer-344 × brown Norway) rats. Neurobiology of Aging, 1992, 13, 319-323.	3.1	30
100	Molecular evidence for two-stage learning and partial laterality in eyeblink conditioning of mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5549-5554.	7.1	29
101	Extinction of a Classically Conditioned Response: Red Nucleus and Interpositus. Journal of Neuroscience, 2008, 28, 2651-2658.	3.6	25
102	Motor cortex lesions do not affect learning or performance of the eyeblink response in rabbits Behavioral Neuroscience, 1997, 111, 727-738.	1.2	24
103	Intracerebellar conditioning — Brogden and Gantt revisited. Behavioural Brain Research, 2000, 110, 3-11.	2.2	24
104	Mechanisms of neuronal conditioning. International Review of Neurobiology, 2001, 45, 313-337.	2.0	23
105	Stimulus generalization of habituation in spinal interneurons. Physiology and Behavior, 1972, 8, 155-158.	2.1	20
106	Selective changes in AMPA receptors in rabbit cerebellum following classical conditioning of the eyelid-nictitating membrane response. Brain Research, 1998, 803, 9-18.	2.2	20
107	Interpositus lesion abolition of the eyeblink conditioned response is not due to effects on performance Behavioral Neuroscience, 1993, 107, 530-532.	1.2	20
108	Prolonging the postcomplex spike pause speeds eyeblink conditioning. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16726-16730.	7.1	17

#	Article	IF	Citations
109	Simultaneous behavioral and neural (cochlear nucleus) measurement during signal detection in the rabbit. Perception & Psychophysics, 1980, 28, 504-513.	2.3	16
110	Sensorimotor Learning and the Cerebellum. Research Notes in Neural Computing, 1991, , 381-396.	0.1	16
111	Cochlear nucleus, inferior colliculus, and medial geniculate responses during the behavioral detection of thresholdâ€level auditory stimuli in the rabbit. Journal of the Acoustical Society of America, 1985, 77, 2111-2127.	1.1	15
112	Manipulation of Pituitary-Adrenal Activity Affects Neural Plasticity in Rodent Hippocampus. Psychological Science, 1990, 1, 201-204.	3.3	15
113	Dependence of evoked cortical association responses on behavioral variables. Learning and Behavior, 1964, 1, 153-154.	0.6	14
114	Essential Neuronal Pathways for Reflex and Conditioned Response Initiation in an Intracerebellar Stimulation Paradigm and the Impact of Unconditioned Stimulus Preexposure on Learning Rate. Neurobiology of Learning and Memory, 1999, 71, 167-193.	1.9	13
115	Individual differences in emergence neophobia predict magnitude of perforant-path long-term potentiation (LTP) and plasma corticosterone levels in rats. Cognitive, Affective and Behavioral Neuroscience, 1993, 21, 2-10.	1.3	13
116	Habituation and dishabituation to dorsal root stimulation in the isolated frog spinal cord. Behavioral Biology, 1972, 7, 37-45.	2.2	12
117	Localization and characterization of an essential associative memory trace in the mammalian brain. Brain Research, 2015, 1621, 252-259.	2.2	12
118	Unit activity recorded from the globus pallidus during classical conditioning of the rabbit nictitating membrane response. Brain Research, 1985, 332, 219-229.	2.2	11
119	Learning and Memory. , 2014, , 591-637.		10
120	Effects of Paired and Unpaired Eye-Blink Conditioning on Purkinje Cell Morphology. Learning and Memory, 1999, 6, 128-137.	1.3	10
121	Stimulation of the lateral septum is a more effective conditioned stimulus than stimulation of the medial septum during classical conditioning of the eye-blink response Behavioral Neuroscience, 1989, 103, 206-208.	1.2	9
122	Timing of conditioned responses utilizing electrical stimulation in the region of the interpositus nucleus as a CS. Integrative Psychological and Behavioral Science, 2004, 39, 83-94.	0.3	9
123	Cortical control of specific and nonspecific sensory projections to the cerebral cortex. Learning and Behavior, 1966, 4, 93-94.	0.6	8
124	Habituation of the pyramidal response in unanesthetized cat. Physiology and Behavior, 1972, 8, 201-205.	2.1	8
125	Alterations in spontaneous miniature potential activity during habituation of a vertebrate monosynaptic pathway. Brain Research, 1980, 189, 377-390.	2.2	8
126	Comment on "Cerebellar LTD and Learning-Dependent Timing of Conditioned Eyelid Responses". Science, 2004, 304, 211b-211b.	12.6	8

#	Article	lF	Citations
127	Brain Mechanisms of Learning. , 1980, , 221-239.		8
128	Spinal Plasticity., 2001,, 1-11.		6
129	Inverse relation between evoked cortical association responses and behavioral orienting to repeated auditory stimuli. Learning and Behavior, 1964, 1, 399-400.	0.6	5
130	Discovering the Brain Substrates of Eyeblink Classical Conditioning., 2002, , 17-49.		5
131	Sensory preconditioning of cats in a shuttle box avoidance situation. Learning and Behavior, 1968, 13, 37-38.	0.6	4
132	Response properties of single units in an association area of the kitten neocortex. Physiology and Behavior, 1976, 16, 151-161.	2.1	4
133	Motor learning and synaptic plasticity in the cerebellum. Behavioral and Brain Sciences, 1996, 19, 475-477.	0.7	4
134	Learning and Memory: Basic Mechanisms. , 2004, , 499-574.		4
135	Multiple Memory Mechanisms in the Cerebellum?. Neuron, 2006, 51, 680-682.	8.1	4
136	Neural unit activity in an anterior "nonspecificâ€cortical area during classical conditioning of the rabbit's nictitating membrane response. Bulletin of the Psychonomic Society, 1980, 15, 61-64.	0.2	3
137	Classical conditioning has much to do with LTP. Behavioral and Brain Sciences, 1997, 20, 632-633.	0.7	3
138	Neurobiological Foundations of Stress., 2006,, 37-65.		2
139	THE SEARCH FOR THE ENGRAM. , 1986, , 3-52.		2
140	Effects of stimulation of frontal cortex on neuronal activity in association and sensory areas of the cortex. Learning and Behavior, 1968, 12, 167-168.	0.6	1
141	"Model systems―versus "neuroethological―approach to hippocampal function. Behavioral and Brain Sciences, 1979, 2, 517-518.	0.7	1
142	Learning and memory: basic principles and model systems., 0,, 22-35.		1
143	Hippocampal activity as a temporal template for learned behavior. Behavioral and Brain Sciences, 1979, 2, 348-348.	0.7	0
144	Learning and memory: basic principles and model systems., 0,, 26-43.		0

#	Article	IF	CITATIONS
145	Learning and Memory, Neural Mechanisms. , 1989, , 8-10.		0
146	Learning and Memory., 1989,, 5-7.		0