JÃ;nos AlmÃ;ssy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11238416/publications.pdf

Version: 2024-02-01

840776 839539 43 451 11 18 citations g-index h-index papers 43 43 43 542 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channelâ€"Part 1: Modulation of TRPM4. Pharmaceuticals, 2022, 15, 81.	3.8	2
2	Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going?. Pharmaceuticals, 2022, 15, 231.	3.8	5
3	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel—Part 2: TRPM4 in Health and Disease. Pharmaceuticals, 2022, 15, 40.	3.8	6
4	Therapeutic Approaches of Ryanodine Receptor-Associated Heart Diseases. International Journal of Molecular Sciences, 2022, 23, 4435.	4.1	13
5	Mexiletine-like cellular electrophysiological effects of GS967 in canine ventricular myocardium. Scientific Reports, 2021, 11, 9565.	3.3	8
6	Transcriptomeâ€based screening of ion channels and transporters in a migratory chondroprogenitor cell line isolated from lateâ€stage osteoarthritic cartilage. Journal of Cellular Physiology, 2021, 236, 7421-7439.	4.1	6
7	Canine Myocytes Represent a Good Model for Human Ventricular Cells Regarding Their Electrophysiological Properties. Pharmaceuticals, 2021, 14, 748.	3.8	12
8	TRPM4 links calcium signaling to membrane potential in pancreatic acinar cells. Journal of Biological Chemistry, 2021, 297, 101015.	3.4	12
9	lon current profiles in canine ventricular myocytes obtained by the "onion peeling―technique. Journal of Molecular and Cellular Cardiology, 2021, 158, 153-162.	1.9	11
10	Late Na+ Current Is [Ca2+]i-Dependent in Canine Ventricular Myocytes. Pharmaceuticals, 2021, 14, 1142.	3.8	4
11	Implication of frequency-dependent protocols in antiarrhythmic and proarrhythmic drug testing. Progress in Biophysics and Molecular Biology, 2020, 157, 76-83.	2.9	4
12	TRPM2â€mediated extracellular Ca 2+ entry promotes acinar cell necrosis in biliary acute pancreatitis. Journal of Physiology, 2020, 598, 1253-1270.	2.9	19
13	Luminal addition of non-permeant Eu3+ interferes with luminal Ca2+ regulation of the cardiac ryanodine receptor. Bioelectrochemistry, 2020, 132, 107449.	4.6	2
14	From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. International Journal of Molecular Sciences, 2020, 21, 8935.	4.1	10
15	4-chloro-orto-cresol activates ryanodine receptor more selectively and potently than 4-chloro-meta-cresol. Cell Calcium, 2020, 88, 102213.	2.4	1
16	Volatile anaesthetics inhibit the thermosensitive nociceptor ion channel transient receptor potential melastatin 3 (TRPM3). Biochemical Pharmacology, 2020, 174, 113826.	4.4	6
17	Late sodium current in human, canine and guinea pig ventricular myocardium. Journal of Molecular and Cellular Cardiology, 2020, 139, 14-23.	1.9	20
18	The regulatory role of vasoactive intestinal peptide in lacrimal gland ductal fluid secretion: A new piece of the puzzle in tear production. Molecular Vision, 2020, 26, 780-788.	1,1	1

#	Article	IF	CITATIONS
19	Dantrolene Requires Mg ²⁺ and ATP To Inhibit the Ryanodine Receptor. Molecular Pharmacology, 2019, 96, 401-407.	2.3	17
20	The diamide insecticide chlorantraniliprole increases the single-channel current activity of the mammalian skeletal muscle ryanodine receptor. General Physiology and Biophysics, 2019, 38, 183-186.	0.9	0
21	Safety Concerns of Diamide Insecticides. Toxicological Sciences, 2019, 171, 281-281.	3.1	1
22	Expression of BK channels and Na+-K+ pumps in the apical membrane of lacrimal acinar cells suggests a new molecular mechanism for primary tear-secretion. Ocular Surface, 2019, 17, 272-277.	4.4	6
23	Brief structural insight into the allosteric gating mechanism of BK (Slo1) channel. Canadian Journal of Physiology and Pharmacology, 2019, 97, 498-502.	1.4	3
24	New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells. Pflugers Archiv European Journal of Physiology, 2018, 470, 613-621.	2.8	9
25	Perspectives of a myosin motor activator agent with increased selectivity. Canadian Journal of Physiology and Pharmacology, 2018, 96, 676-680.	1.4	1
26	Omecamtiv Mecarbil: A Myosin Motor Activator Agent with Promising Clinical Performance and New in vitro Results. Current Medicinal Chemistry, 2018, 25, 1720-1728.	2.4	11
27	Omecamtiv mecarbil activates ryanodine receptors from canine cardiac but not skeletal muscle. European Journal of Pharmacology, 2017, 809, 73-79.	3.5	8
28	Lanthanides Report Calcium Sensor in the Vestibule of Ryanodine Receptor. Biophysical Journal, 2017, 112, 2127-2137.	0.5	11
29	Frequency-dependent effects of omecamtiv mecarbil on cell shortening of isolated canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1239-1246.	3.0	33
30	Follistatin treatment suppresses SERCA1b levels independently of other players of calcium homeostasis in C2C12 myotubes. Journal of Muscle Research and Cell Motility, 2017, 38, 215-229.	2.0	3
31	Bile acids activate ryanodine receptors in pancreatic acinar cells via a direct allosteric mechanism. Cell Calcium, 2015, 58, 160-170.	2.4	14
32	Photolysis of Caged Compounds: Studying Ca2+ Signaling and Activation of Ca2+-Dependent Ion Channels. Cold Spring Harbor Protocols, 2013, 2013, pdb.top066076-pdb.top066076.	0.3	5
33	Analyzing Ca ²⁺ Dynamics in Intact Epithelial Cells Using Spatially Limited Flash Photolysis. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot072777.	0.3	2
34	Investigating Ion Channel Distribution Using a Combination of Spatially Limited Photolysis, Ca2+ Imaging, and Patch Clamp Recording. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot072769-pdb.prot072769.	0.3	4
35	Studying the Activation of Epithelial Ion Channels Using Global Whole-Field Photolysis. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot072751.	0.3	5
36	Apical Ca2+-activated potassium channels in mouse parotid acinar cells. Journal of General Physiology, 2012, 139, 121-133.	1.9	39

JÃinos AlmÃissy

#	Article	IF	CITATION
37	The LRRC26 Protein Selectively Alters the Efficacy of BK Channel Activators. Molecular Pharmacology, 2012, 81, 21-30.	2.3	40
38	Effects of articaine and ropivacaine on calcium handling and contractility in canine ventricular myocardium. European Journal of Anaesthesiology, 2010, 27, 153-161.	1.7	6
39	Effects of K-201 on the calcium pump and calcium release channel of rat skeletal muscle. Pflugers Archiv European Journal of Physiology, 2008, 457, 171-183.	2.8	9
40	Charged Surface Area of Maurocalcine Determines Its Interaction with the Skeletal Ryanodine Receptor. Biophysical Journal, 2008, 95, 3497-3509.	0.5	22
41	Maurocalcine interacts with the cardiac ryanodine receptor without inducing channel modification. Biochemical Journal, 2007, 406, 309-315.	3.7	12
42	Effect of natural phenol derivatives on skeletal type sarcoplasmic reticulum Ca2+-ATPase and ryanodine receptor. Journal of Muscle Research and Cell Motility, 2007, 28, 167-174.	2.0	40
43	Alterations in the calcium homeostasis of skeletal muscle from postmyocardial infarcted rats. Pflugers Archiv European Journal of Physiology, 2007, 455, 541-553.	2.8	8