JÃ;nos AlmÃ;ssy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11238416/publications.pdf Version: 2024-02-01

IÃ:NOS ALMÃ:SSY

#	Article	IF	CITATIONS
1	Effect of natural phenol derivatives on skeletal type sarcoplasmic reticulum Ca2+-ATPase and ryanodine receptor. Journal of Muscle Research and Cell Motility, 2007, 28, 167-174.	2.0	40
2	The LRRC26 Protein Selectively Alters the Efficacy of BK Channel Activators. Molecular Pharmacology, 2012, 81, 21-30.	2.3	40
3	Apical Ca2+-activated potassium channels in mouse parotid acinar cells. Journal of General Physiology, 2012, 139, 121-133.	1.9	39
4	Frequency-dependent effects of omecamtiv mecarbil on cell shortening of isolated canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1239-1246.	3.0	33
5	Charged Surface Area of Maurocalcine Determines Its Interaction with the Skeletal Ryanodine Receptor. Biophysical Journal, 2008, 95, 3497-3509.	0.5	22
6	Late sodium current in human, canine and guinea pig ventricular myocardium. Journal of Molecular and Cellular Cardiology, 2020, 139, 14-23.	1.9	20
7	TRPM2â€mediated extracellular Ca 2+ entry promotes acinar cell necrosis in biliary acute pancreatitis. Journal of Physiology, 2020, 598, 1253-1270.	2.9	19
8	Dantrolene Requires Mg ²⁺ and ATP To Inhibit the Ryanodine Receptor. Molecular Pharmacology, 2019, 96, 401-407.	2.3	17
9	Bile acids activate ryanodine receptors in pancreatic acinar cells via a direct allosteric mechanism. Cell Calcium, 2015, 58, 160-170.	2.4	14
10	Therapeutic Approaches of Ryanodine Receptor-Associated Heart Diseases. International Journal of Molecular Sciences, 2022, 23, 4435.	4.1	13
11	Maurocalcine interacts with the cardiac ryanodine receptor without inducing channel modification. Biochemical Journal, 2007, 406, 309-315.	3.7	12
12	Canine Myocytes Represent a Good Model for Human Ventricular Cells Regarding Their Electrophysiological Properties. Pharmaceuticals, 2021, 14, 748.	3.8	12
13	TRPM4 links calcium signaling to membrane potential in pancreatic acinar cells. Journal of Biological Chemistry, 2021, 297, 101015.	3.4	12
14	Lanthanides Report Calcium Sensor in the Vestibule of Ryanodine Receptor. Biophysical Journal, 2017, 112, 2127-2137.	0.5	11
15	lon current profiles in canine ventricular myocytes obtained by the "onion peeling―technique. Journal of Molecular and Cellular Cardiology, 2021, 158, 153-162.	1.9	11
16	Omecamtiv Mecarbil: A Myosin Motor Activator Agent with Promising Clinical Performance and New in vitro Results. Current Medicinal Chemistry, 2018, 25, 1720-1728.	2.4	11
17	From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. International Journal of Molecular Sciences, 2020, 21, 8935.	4.1	10
18	Effects of K-201 on the calcium pump and calcium release channel of rat skeletal muscle. Pflugers Archiv European Journal of Physiology, 2008, 457, 171-183.	2.8	9

JÃinos AlmÃissy

#	Article	IF	CITATIONS
19	New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells. Pflugers Archiv European Journal of Physiology, 2018, 470, 613-621.	2.8	9
20	Alterations in the calcium homeostasis of skeletal muscle from postmyocardial infarcted rats. Pflugers Archiv European Journal of Physiology, 2007, 455, 541-553.	2.8	8
21	Omecamtiv mecarbil activates ryanodine receptors from canine cardiac but not skeletal muscle. European Journal of Pharmacology, 2017, 809, 73-79.	3.5	8
22	Mexiletine-like cellular electrophysiological effects of GS967 in canine ventricular myocardium. Scientific Reports, 2021, 11, 9565.	3.3	8
23	Effects of articaine and ropivacaine on calcium handling and contractility in canine ventricular myocardium. European Journal of Anaesthesiology, 2010, 27, 153-161.	1.7	6
24	Expression of BK channels and Na+-K+ pumps in the apical membrane of lacrimal acinar cells suggests a new molecular mechanism for primary tear-secretion. Ocular Surface, 2019, 17, 272-277.	4.4	6
25	Volatile anaesthetics inhibit the thermosensitive nociceptor ion channel transient receptor potential melastatin 3 (TRPM3). Biochemical Pharmacology, 2020, 174, 113826.	4.4	6
26	Transcriptomeâ€based screening of ion channels and transporters in a migratory chondroprogenitor cell line isolated from lateâ€stage osteoarthritic cartilage. Journal of Cellular Physiology, 2021, 236, 7421-7439.	4.1	6
27	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel—Part 2: TRPM4 in Health and Disease. Pharmaceuticals, 2022, 15, 40.	3.8	6
28	Photolysis of Caged Compounds: Studying Ca2+ Signaling and Activation of Ca2+-Dependent Ion Channels. Cold Spring Harbor Protocols, 2013, 2013, pdb.top066076-pdb.top066076.	0.3	5
29	Studying the Activation of Epithelial Ion Channels Using Global Whole-Field Photolysis. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot072751.	0.3	5
30	Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going?. Pharmaceuticals, 2022, 15, 231.	3.8	5
31	Investigating Ion Channel Distribution Using a Combination of Spatially Limited Photolysis, Ca2+ Imaging, and Patch Clamp Recording. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot072769-pdb.prot072769.	0.3	4
32	Implication of frequency-dependent protocols in antiarrhythmic and proarrhythmic drug testing. Progress in Biophysics and Molecular Biology, 2020, 157, 76-83.	2.9	4
33	Late Na+ Current Is [Ca2+]i-Dependent in Canine Ventricular Myocytes. Pharmaceuticals, 2021, 14, 1142.	3.8	4
34	Follistatin treatment suppresses SERCA1b levels independently of other players of calcium homeostasis in C2C12 myotubes. Journal of Muscle Research and Cell Motility, 2017, 38, 215-229.	2.0	3
35	Brief structural insight into the allosteric gating mechanism of BK (Slo1) channel. Canadian Journal of Physiology and Pharmacology, 2019, 97, 498-502.	1.4	3
36	Analyzing Ca ²⁺ Dynamics in Intact Epithelial Cells Using Spatially Limited Flash Photolysis. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot072777.	0.3	2

JÃinos AlmÃissy

#	Article	IF	CITATIONS
37	Luminal addition of non-permeant Eu3+ interferes with luminal Ca2+ regulation of the cardiac ryanodine receptor. Bioelectrochemistry, 2020, 132, 107449.	4.6	2
38	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel—Part 1: Modulation of TRPM4. Pharmaceuticals, 2022, 15, 81.	3.8	2
39	Perspectives of a myosin motor activator agent with increased selectivity. Canadian Journal of Physiology and Pharmacology, 2018, 96, 676-680.	1.4	1
40	Safety Concerns of Diamide Insecticides. Toxicological Sciences, 2019, 171, 281-281.	3.1	1
41	4-chloro-orto-cresol activates ryanodine receptor more selectively and potently than 4-chloro-meta-cresol. Cell Calcium, 2020, 88, 102213.	2.4	1
42	The regulatory role of vasoactive intestinal peptide in lacrimal gland ductal fluid secretion: A new piece of the puzzle in tear production. Molecular Vision, 2020, 26, 780-788.	1.1	1
43	The diamide insecticide chlorantraniliprole increases the single-channel current activity of the mammalian skeletal muscle ryanodine receptor. General Physiology and Biophysics, 2019, 38, 183-186.	0.9	0