C Muraleedharan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11238237/publications.pdf Version: 2024-02-01

C MUDALEEDHADAN

#	Article	IF	CITATIONS
1	Region-specific biomass feedstock selection for gasification using multi-attribute decision-making techniques. International Journal of Sustainable Engineering, 2021, 14, 1101-1109.	1.9	14
2	Energy and exergy analysis of syngas production from different biomasses through air-steam gasification. Frontiers in Energy, 2020, 14, 607-619.	1.2	21
3	Theoretical and experimental feasibility study of groundnut shell gasification in a fluidized bed gasifier. Biomass Conversion and Biorefinery, 2020, 10, 735-742.	2.9	10
4	Development of a Systematic Design Procedure for Circulating Fluidized Bed Gasifier. Springer Transactions in Civil and Environmental Engineering, 2020, , 71-84.	0.3	1
5	Mathematical Modeling of Reduction Zone of a Downdraft Biomass Gasifier. Advanced Science, Engineering and Medicine, 2020, 12, 1500-1504.	0.3	0
6	Experimental investigation on co-gasification of coffee husk and sawdust in a bubbling fluidised bed gasifier. Journal of the Energy Institute, 2019, 92, 1977-1986.	2.7	31
7	Assessment of producer gas composition in air gasification of biomass using artificial neural network model. International Journal of Hydrogen Energy, 2018, 43, 9558-9568.	3.8	83
8	Performance Evaluation of Fluidised Bed Biomass Gasifier Using CFD. Energy Procedia, 2016, 90, 154-162.	1.8	16
9	Stoichiometric Equilibrium Model Based Assessment of Hydrogen Generation through Biomass Gasification. Procedia Technology, 2016, 25, 982-989.	1.1	36
10	Extraction of Oil from Rubber Seed through Hydraulic Press and Kinetic Study of Acid Esterification of Rubber Seed Oil. Procedia Technology, 2016, 25, 1006-1013.	1.1	8
11	Enzymatic Transesterification of Rubber Seed Oil Using Rhizopus Oryzae Lipase. Procedia Technology, 2016, 25, 1014-1021.	1.1	18
12	A comparative study on gaseous fuel generation capability of biomass materials by thermo-chemical gasification using stoichiometric quasi-steady-state model. International Journal of Energy and Environmental Engineering, 2015, 6, 375-384.	1.3	24
13	Applications of artificial neural networks for thermal analysis of heat exchangers – A review. International Journal of Thermal Sciences, 2015, 90, 150-172.	2.6	232
14	Air–steam gasification of biomass in fluidized bed with CO2 absorption: A kinetic model for performance prediction. Fuel Processing Technology, 2015, 130, 197-207.	3.7	33
15	Performance prediction of steam gasification of wood using an ASPEN PLUS thermodynamic equilibrium model. International Journal of Sustainable Energy, 2014, 33, 416-434.	1.3	40
16	Allothermal air–steam gasification of biomass with CO2 (carbon dioxide) sorption: Performance prediction based on a chemical kinetic model. Energy, 2014, 69, 399-408.	4.5	7
17	Performance prediction of fluidised bed gasification of biomass using experimental data-based simulation models. Biomass Conversion and Biorefinery, 2013, 3, 283-304.	2.9	24
18	Energy and exergy analysis of steam gasification of biomass materials: a comparative study. International Journal of Ambient Energy, 2013, 34, 35-52.	1.4	28

C MURALEEDHARAN

#	Article	IF	CITATIONS
19	Thermo-Chemical Analysis of Biomass Gasification by Gibbs Free Energy Minimization Model-Part: II (Optimization of Biomass Feed and Steam to Biomass Ratio). International Journal of Green Energy, 2013, 10, 610-639.	2.1	27
20	Energy and exergy analysis of solar hybrid adsorption refrigeration system. International Journal of Sustainable Engineering, 2013, 6, 289-300.	1.9	7
21	Thermochemical Analysis of Biomass Gasification by Gibbs Free Energy Minimization Model—Part: I (Optimization of Pressure and Temperature). International Journal of Green Energy, 2013, 10, 231-256.	2.1	18
22	Artificial neural network modelling of adsorbent bed in a solar adsorption refrigeration system. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227, 346-358.	1.1	2
23	Exergy Assessment of Single Stage Solar Adsorption Refrigeration System Using ANN. ISRN Mechanical Engineering, 2012, 2012, 1-10.	0.9	7
24	Equilibrium modeling and regression analysis of biomass gasification. Journal of Renewable and Sustainable Energy, 2012, 4, .	0.8	11
25	Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review. Renewable and Sustainable Energy Reviews, 2012, 16, 1340-1358.	8.2	322
26	Performance Prediction of Solar Adsorption Refrigeration System by Ann. ISRN Thermodynamics, 2012, 2012, 1-8.	0.6	9
27	A review on recent developments in new refrigerant mixtures for vapour compression-based refrigeration, air-conditioning and heat pump units. International Journal of Energy Research, 2011, 35, 647-669.	2.2	124
28	A comparative study of vegetable oil methyl esters (biodiesels). Energy, 2011, 36, 2129-2137.	4.5	89
29	Performance and emission studies on biodiesel-liquefied petroleum gas dual fuel engine with exhaust gas recirculation. Journal of Renewable and Sustainable Energy, 2010, 2, .	0.8	10
30	Methyl Ester Production from Rubber Seed oil Using Two-Step Pretreatment Process. International Journal of Green Energy, 2010, 7, 84-90.	2.1	46
31	Exergy Assessment of a Direct Expansion Solar-Assisted Heat Pump Working with R22 and R407C/LPG Mixture. International Journal of Green Energy, 2010, 7, 65-83.	2.1	33
32	A comparison of the performance of a direct expansion solar assisted heat pump working with R22 and a mixture of R407C–liquefied petroleum gas. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2009, 223, 821-833.	0.8	18
33	Exergy analysis of direct expansion solar-assisted heat pumps using artificial neural networks. International Journal of Energy Research, 2009, 33, 1005-1020.	2.2	45
34	Environment friendly alternatives to halogenated refrigerants—A review. International Journal of Greenhouse Gas Control, 2009, 3, 108-119.	2.3	227
35	Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks. Applied Energy, 2009, 86, 1442-1449.	5.1	85
36	Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator. International Journal of Thermal Sciences, 2009, 48, 1036-1042.	2.6	128

C MURALEEDHARAN

#	Article	IF	CITATIONS
37	Biodiesel Production from Vegetable Oils: A Comparative Optimization Study. Journal of Biobased Materials and Bioenergy, 2009, 3, 335-341.	0.1	11
38	Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas. Renewable Energy, 2008, 33, 2077-2083.	4.3	125
39	Comparative assessment of environment-friendly alternatives to R134a in domestic refrigerators. Energy Efficiency, 2008, 1, 189-198.	1.3	32
40	Modeling of a Direct Expansion Solar Assisted Heat Pump Using Artificial Neural Networks. International Journal of Green Energy, 2008, 5, 520-532.	2.1	36
41	Improved energy efficiency for HFC134a domestic refrigerator retrofitted with hydrocarbon mixture (HC290/HC600a) as drop-in substitute. Energy for Sustainable Development, 2007, 11, 29-33.	2.0	22
42	Power generation using coir-pith and wood derived producer gas in diesel engines. Fuel Processing Technology, 2006, 87, 849-853.	3.7	91
43	Theoretical modeling and experimental studies on biodiesel-fueled engine. Renewable Energy, 2006, 31, 1813-1826.	4.3	83
44	Characterization and effect of using rubber seed oil as fuel in the compression ignition engines. Renewable Energy, 2005, 30, 795-803.	4.3	270
45	Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil. Renewable Energy, 2005, 30, 1789-1800.	4.3	547
46	Biodiesel production from high FFA rubber seed oil. Fuel, 2005, 84, 335-340.	3.4	1,009
47	Use of vegetable oils as I.C. engine fuels—A review. Renewable Energy, 2004, 29, 727-742.	4.3	635