Sébastien Sallard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1123727/publications.pdf

Version: 2024-02-01

1478505 1474206 9 164 9 6 citations h-index g-index papers 9 9 9 271 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Improved electrochemical performances of Li-rich nickel cobalt manganese oxide by partial substitution of Li + by Mg 2+. Journal of Power Sources, 2017, 359, 27-36.	7.8	44
2	Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials. Journal of Materials Chemistry A, 2019, 7, 15215-15224.	10.3	34
3	Bimodal mesoporous titanium dioxide anatase films templated by a block polymer and an ionic liquid: influence of the porosity on the permeability. Nanoscale, 2013, 5, 12316.	5.6	24
4	Cr-Doped Li-Rich Nickel Cobalt Manganese Oxide as a Positive Electrode Material in Li-Ion Batteries to Enhance Cycling Stability. ACS Applied Energy Materials, 2020, 3, 8646-8657.	5.1	23
5	The impact of polymeric binder on the morphology and performances of sulfur electrodes in lithium–sulfur batteries. Electrochimica Acta, 2020, 360, 136993.	5.2	14
6	Dielectric Barrier Discharge (DBD) Plasma Coating of Sulfur for Mitigation of Capacity Fade in Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28072-28089.	8.0	14
7	Impact of Different Conductive Polymers on the Performance of the Sulfur Positive Electrode in Li–S Batteries. ACS Applied Energy Materials, 2022, 5, 4861-4876.	5.1	5
8	Lithium chromium pyrophosphate as an insertion material for Li-ion batteries. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 661-667.	1.1	4
9	Multiple redox couples cathode material for Li-ion battery: Lithium chromium phosphate. Journal of Energy Storage, 2018, 15, 266-273.	8.1	2