List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1123649/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The liverwort Marchantia polymorpha, a model for all ages. Current Topics in Developmental Biology, 2022, 147, 1-32.	1.0	17
2	KANADI promotes thallus differentiation and FRâ€induced gametangiophore formation in the liverwort <i>Marchantia</i> . New Phytologist, 2022, 234, 1377-1393.	3.5	10
3	Stress, senescence and specialised metabolites in bryophytes. Journal of Experimental Botany, 2022, , .	2.4	11
4	The nature of nurture: the conserved role of tapetalâ€ l ike cells in sporogenesis between mosses and angiosperms. New Phytologist, 2022, , .	3.5	0
5	<i>CLASS-II KNOX</i> genes coordinate spatial and temporal ripening in tomato. Plant Physiology, 2022, 190, 657-668.	2.3	11
6	On the Evolutionary Origins of Land Plant Auxin Biology. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040048.	2.3	8
7	DEFECTIVE EMBRYO AND MERISTEMS genes are required for cell division and gamete viability in Arabidopsis. PLoS Genetics, 2021, 17, e1009561.	1.5	3
8	Gamete expression of TALE class HD genes activates the diploid sporophyte program in Marchantia polymorpha. ELife, 2021, 10, .	2.8	35
9	Rates and patterns of molecular evolution in bryophyte genomes, with focus on complex thalloid liverworts, Marchantiopsida. Molecular Phylogenetics and Evolution, 2021, 165, 107295.	1.2	12
10	Phosphate Starvation Triggers Transcriptional Changes in the Biosynthesis and Signaling Pathways of Phytohormones in Marchantia polymorphaÂ. Biology and Life Sciences Forum, 2021, 4, 89.	0.6	1
11	Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Current Biology, 2021, 31, 5522-5532.e7.	1.8	36
12	Induction of Multichotomous Branching by CLAVATA Peptide in Marchantia polymorpha. Current Biology, 2020, 30, 3833-3840.e4.	1.8	54
13	Transcriptional and Morpho-Physiological Responses of Marchantia polymorpha upon Phosphate Starvation. International Journal of Molecular Sciences, 2020, 21, 8354.	1.8	17
14	Ethylene-independent functions of the ethylene precursor ACC in Marchantia polymorpha. Nature Plants, 2020, 6, 1335-1344.	4.7	46
15	Oil Body Formation in Marchantia polymorpha Is Controlled by MpC1HDZ and Serves as a Defense against Arthropod Herbivores. Current Biology, 2020, 30, 2815-2828.e8.	1.8	48
16	Chromatin Organization in Early Land Plants Reveals an Ancestral Association between H3K27me3, Transposons, and Constitutive Heterochromatin. Current Biology, 2020, 30, 573-588.e7.	1.8	160
17	The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective. Frontiers in Plant Science, 2020, 11, 7.	1.7	126
18	Cellulose Synthesis – Central Components and Their Evolutionary Relationships. Trends in Plant Science, 2019, 24, 402-412.	4.3	62

#	Article	IF	CITATIONS
19	Control of proliferation in the haploid meristem by CLE peptide signaling in Marchantia polymorpha. PLoS Genetics, 2019, 15, e1007997.	1.5	55
20	Evolution and co-option of developmental regulatory networks in early land plants. Current Topics in Developmental Biology, 2019, 131, 35-53.	1.0	32
21	A <i>cis</i> â€ecting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO Journal, 2019, 38, .	3.5	59
22	Something ancient and something neofunctionalized—evolution of land plant hormone signaling pathways. Current Opinion in Plant Biology, 2019, 47, 64-72.	3.5	44
23	Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science, 2018, 360, 212-215.	6.0	272
24	Class C <scp>ARF</scp> s evolved before the origin of land plants and antagonize differentiation and developmental transitions in <i>Marchantia polymorpha</i> . New Phytologist, 2018, 218, 1612-1630.	3.5	81
25	Evolutionary history of <scp>HOMEODOMAIN LEUCINE ZIPPER</scp> transcription factors during plant transition to land. New Phytologist, 2018, 219, 408-421.	3.5	31
26	Genetic analysis of the liverwort <i>Marchantia polymorpha</i> reveals that R2R3 <scp>MYB</scp> activation of flavonoid production in response to abiotic stress is an ancient character in land plants. New Phytologist, 2018, 218, 554-566.	3.5	98
27	An Evolutionarily Conserved Abscisic Acid Signaling Pathway Regulates Dormancy in the Liverwort Marchantia polymorpha. Current Biology, 2018, 28, 3691-3699.e3.	1.8	68
28	Terpenoid Secondary Metabolites in Bryophytes: Chemical Diversity, Biosynthesis and Biological Functions. Critical Reviews in Plant Sciences, 2018, 37, 210-231.	2.7	57
29	Co-expression and Transcriptome Analysis of Marchantia polymorpha Transcription Factors Supports Class C ARFs as Independent Actors of an Ancient Auxin Regulatory Module. Frontiers in Plant Science, 2018, 9, 1345.	1.7	41
30	Micro <scp>RNA</scp> s in <i>Marchantia polymorpha</i> . New Phytologist, 2018, 220, 409-416.	3.5	20
31	3D Body Evolution: Adding a New Dimension to Colonize the Land. Current Biology, 2018, 28, R838-R840.	1.8	2
32	UVR8â€nediated induction of flavonoid biosynthesis for UVB tolerance is conserved between the liverwort <i>Marchantia polymorpha</i> and flowering plants. Plant Journal, 2018, 96, 503-517.	2.8	93
33	Extensive epigenetic reprogramming during the life cycle of Marchantia polymorpha. Genome Biology, 2018, 19, 9.	3.8	64
34	Marchantia liverworts as a proxy to plants' basal microbiomes. Scientific Reports, 2018, 8, 12712.	1.6	46
35	The KNOXI Transcription Factor SHOOT MERISTEMLESS Regulates Floral Fate in Arabidopsis. Plant Cell, 2018, 30, 1309-1321.	3.1	23
36	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	13.5	973

#	Article	IF	CITATIONS
37	A Genetic Screen for Impaired Systemic RNAi Highlights the Crucial Role of DICER-LIKE 2. Plant Physiology, 2017, 175, 1424-1437.	2.3	72
38	Evolution of the Metabolic Network Leading to Ascorbate Synthesis and Degradation Using Marchantia polymorpha as a Model System. , 2017, , 417-430.		0
39	Active suppression of a leaf meristem orchestrates determinate leaf growth. ELife, 2016, 5, .	2.8	139
40	Evolution of the YABBY gene family in seed plants. Evolution & Development, 2016, 18, 116-126.	1.1	87
41	Evolution in the Cycles of Life. Annual Review of Genetics, 2016, 50, 133-154.	3.2	99
42	Field Guide to Plant Model Systems. Cell, 2016, 167, 325-339.	13.5	99
43	Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12328-12333.	3.3	70
44	Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha. Plant Cell, 2016, 28, tpc.00062.2016.	3.1	48
45	Marchantia MpRKD Regulates the Gametophyte-Sporophyte Transition by Keeping Egg Cells Quiescent in the Absence of Fertilization. Current Biology, 2016, 26, 1782-1789.	1.8	104
46	A Brief History of <i>Marchantia</i> from Greece to Genomics. Plant and Cell Physiology, 2016, 57, 210-229.	1.5	74
47	Efficient and Inducible Use of Artificial MicroRNAs in <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2016, 57, 281-290.	1.5	91
48	Class III HD-Zip activity coordinates leaf development in Physcomitrella patens. Developmental Biology, 2016, 419, 184-197.	0.9	47
49	The Naming of Names: Guidelines for Gene Nomenclature in <i>Marchantia</i> . Plant and Cell Physiology, 2016, 57, 257-261.	1.5	60
50	Identification of miRNAs and Their Targets in the Liverwort <i>Marchantia polymorpha</i> by Integrating RNA-Seq and Degradome Analyses. Plant and Cell Physiology, 2016, 57, 339-358.	1.5	70
51	<i>Marchantia</i> : Past, Present and Future. Plant and Cell Physiology, 2016, 57, 205-209.	1.5	45
52	Marchantia. Current Biology, 2016, 26, R186-R187.	1.8	16
53	Profiling and Characterization of Small RNAs in the Liverwort, <i>Marchantia polymorpha</i> , Belonging to the First Diverged Land Plants. Plant and Cell Physiology, 2016, 57, 359-372.	1.5	68
54	A Role of TDIF Peptide Signaling in Vascular Cell Differentiation is Conserved Among Euphyllophytes. Frontiers in Plant Science, 2015, 6, 1048.	1.7	38

#	Article	IF	CITATIONS
55	Auxin Produced by the Indole-3-Pyruvic Acid Pathway Regulates Development and Gemmae Dormancy in the Liverwort <i>Marchantia polymorpha</i> . Plant Cell, 2015, 27, 1650-1669.	3.1	138
56	Antagonistic Roles for KNOX1 and KNOX2 Genes in Patterning the Land Plant Body Plan Following an Ancient Gene Duplication. PLoS Genetics, 2015, 11, e1004980.	1.5	137
57	Comparative Analysis of the Conserved Functions of Arabidopsis DRL1 and Yeast KTI12. Molecules and Cells, 2015, 38, 243-250.	1.0	9
58	Auxin-Mediated Transcriptional System with a Minimal Set of Components Is Critical for Morphogenesis through the Life Cycle in Marchantia polymorpha. PLoS Genetics, 2015, 11, e1005084.	1.5	157
59	A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort Marchantia polymorpha. PLoS Genetics, 2015, 11, e1005207.	1.5	200
60	Origin of a novel regulatory module by duplication and degeneration of an ancient plant transcription factor. Molecular Phylogenetics and Evolution, 2014, 81, 159-173.	1.2	14
61	Flower Development: Open Questions and Future Directions. Methods in Molecular Biology, 2014, 1110, 103-124.	0.4	26
62	From cell to organism across space and time. Current Opinion in Plant Biology, 2013, 16, 542-544.	3.5	0
63	Walkabout on the long branches of plant evolution. Current Opinion in Plant Biology, 2013, 16, 70-77.	3.5	84
64	My favourite flowering image. Journal of Experimental Botany, 2013, 64, 5779-5782.	2.4	1
65	Evolution of the Class IV HD-Zip Gene Family in Streptophytes. Molecular Biology and Evolution, 2013, 30, 2347-2365.	3.5	31
66	KNOX2 Genes Regulate the Haploid-to-Diploid Morphological Transition in Land Plants. Science, 2013, 339, 1067-1070.	6.0	132
67	Genome-Wide Identification of KANADI1 Target Genes. PLoS ONE, 2013, 8, e77341.	1.1	61
68	The ABC model of flower development: then and now. Development (Cambridge), 2012, 139, 4095-4098.	1.2	147
69	The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants. Science, 2011, 332, 960-963.	6.0	794
70	Stomata: Active Portals for Flourishing on Land. Current Biology, 2011, 21, R540-R541.	1.8	14
71	Arabidopsis Homologs of the <i>Petunia</i> Â <i>HAIRY MERISTEM</i> Gene Are Required for Maintenance of Shoot and Root Indeterminacy Â. Plant Physiology, 2011, 155, 735-750.	2.3	116
72	Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology?. Journal of Plant Research, 2010, 123, 43-55.	1.2	90

#	Article	IF	CITATIONS
73	Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature, 2010, 465, 316-321.	13.7	739
74	Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation. Development (Cambridge), 2010, 137, 975-984.	1.2	179
75	Differentiating Arabidopsis Shoots from Leaves by Combined YABBY Activities Â. Plant Cell, 2010, 22, 2113-2130.	3.1	265
76	The <i>NGATHA</i> Distal Organ Development Genes Are Essential for Style Specification in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 1373-1393.	3.1	115
77	The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8392-8397.	3.3	301
78	Auxin-Dependent Patterning and Gamete Specification in the <i>Arabidopsis</i> Female Gametophyte. Science, 2009, 324, 1684-1689.	6.0	252
79	Evolution of plant microRNAs and their targets. Trends in Plant Science, 2008, 13, 343-349.	4.3	426
80	Criteria for Annotation of Plant MicroRNAs. Plant Cell, 2008, 20, 3186-3190.	3.1	1,158
81	Patterning and Polarity in Seed Plant Shoots. Annual Review of Plant Biology, 2008, 59, 67-88.	8.6	109
82	Activity Range of Arabidopsis Small RNAs Derived from Different Biogenesis Pathways Â. Plant Physiology, 2008, 147, 58-62.	2.3	51
83	Signals Derived from <i>YABBY</i> Gene Activities in Organ Primordia Regulate Growth and Partitioning of <i>Arabidopsis</i> Shoot Apical Meristems. Plant Cell, 2008, 20, 1217-1230.	3.1	143
84	REBELOTE, SQUINT, and ULTRAPETALA1 Function Redundantly in the Temporal Regulation of Floral Meristem Termination in Arabidopsis thaliana Â. Plant Cell, 2008, 20, 901-919.	3.1	112
85	The Ancestral Developmental Tool Kit of Land Plants. International Journal of Plant Sciences, 2007, 168, 1-35.	0.6	273
86	Green Genes—Comparative Genomics of the Green Branch of Life. Cell, 2007, 129, 229-234.	13.5	209
87	KANADI and Class III HD-Zip Gene Families Regulate Embryo Patterning and Modulate Auxin Flow during Embryogenesis in Arabidopsis. Plant Cell, 2007, 19, 495-508.	3.1	201
88	Freezing and desiccation tolerance in the moss Physcomitrella patens: An in situ Fourier transform infrared spectroscopic study. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1226-1234.	1.1	84
89	ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. Plant Journal, 2006, 46, 522-531.	2.8	154
90	Molecules and morphology: comparative developmental genetics of the Brassicaceae. Plant Systematics and Evolution, 2006, 259, 199-215.	0.3	20

#	Article	IF	CITATIONS
91	Distinct Developmental Mechanisms Reflect the Independent Origins of Leaves in Vascular Plants. Current Biology, 2006, 16, 1911-1917.	1.8	98
92	Evolution of Class III Homeodomain–Leucine Zipper Genes in Streptophytes. Genetics, 2006, 173, 373-388.	1.2	133
93	Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development (Cambridge), 2005, 132, 5021-5032.	1.2	169
94	Multiple Protein Regions Contribute to Differential Activities of YABBY Proteins inReproductive Development. Plant Physiology, 2005, 137, 651-662.	2.3	29
95	Activation of CRABS CLAW in the Nectaries and Carpels of Arabidopsis. Plant Cell, 2005, 17, 25-36.	3.1	147
96	Roles for Class III HD-Zip and KANADI Genes in Arabidopsis Root Development. Plant Physiology, 2004, 135, 2261-2270.	2.3	146
97	Molecular evidence for bicontinental hybridogenous genomic constitution in <i>Lepidium</i> sensu stricto (Brassicaceae) species from Australia and New Zealand. American Journal of Botany, 2004, 91, 254-261.	0.8	122
98	Promoter Bashing, microRNAs, and Knox Genes. New Insights, Regulators, and Targets-of-Regulation in the Establishment of Lateral Organ Polarity in Arabidopsis. Plant Physiology, 2004, 135, 685-694.	2.3	63
99	The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering. Development (Cambridge), 2004, 131, 4965-4975.	1.2	152
100	Ancient microRNA target sequences in plants. Nature, 2004, 428, 485-486.	13.7	370
101	Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity?. BioEssays, 2004, 26, 938-942.	1.2	58
102	Asymmetric leaf development and blade expansion in Arabidopsisare mediated by KANADI and YABBY activities. Development (Cambridge), 2004, 131, 2997-3006.	1.2	365
103	MicroRNAs Guide Asymmetric DNA Modifications Guiding Asymmetric Organs. Developmental Cell, 2004, 7, 629-630.	3.1	7
104	Radial Patterning of Arabidopsis Shoots by Class III HD-ZIP and KANADI Genes. Current Biology, 2003, 13, 1768-1774.	1.8	990
105	Plant genetics: a decade of integration. Nature Genetics, 2003, 33, 294-304.	9.4	35
106	Allopolyploidization and evolution of species with reduced floral structures in Lepidium L. (Brassicaceae). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16835-16840.	3.3	68
107	A Surveillance System Regulates Selective Entry of RNA into the Shoot Apex. Plant Cell, 2002, 14, 1497-1508.	3.1	162
108	YABBY Polarity Genes Mediate the Repression of KNOX Homeobox Genes in Arabidopsis. Plant Cell, 2002, 14, 2761-2770.	3.1	229

#	Article	IF	CITATIONS
109	Establishment of polarity in angiosperm lateral organs. Trends in Genetics, 2002, 18, 134-141.	2.9	267
110	Turning floral organs into leaves, leaves into floral organs. Current Opinion in Genetics and Development, 2001, 11, 449-456.	1.5	139
111	Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, 411, 709-713.	13.7	995
112	Establishment of polarity in lateral organs of plants. Current Biology, 2001, 11, 1251-1260.	1.8	620
113	Chloroplast DNA phylogeny and biogeography of Lepidium (Brassicaceae). American Journal of Botany, 2001, 88, 2051-2063.	0.8	122
114	The Arabidopsis nectary is an ABC-independent floral structure. Development (Cambridge), 2001, 128, 4657-4667.	1.2	85
115	The Arabidopsis nectary is an ABC-independent floral structure. Development (Cambridge), 2001, 128, 4657-67.	1.2	42
116	Chloroplast DNA phylogeny and biogeography of Lepidium (Brassicaceae). American Journal of Botany, 2001, 88, 2051-63.	0.8	17
117	SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 2000, 404, 766-770.	13.7	858
118	The YABBY gene family and abaxial cell fate. Current Opinion in Plant Biology, 2000, 3, 17-22.	3.5	249
119	Formation and maintenance of the shoot apical meristem. Trends in Plant Science, 2000, 5, 110-115.	4.3	217
120	Axial patterning in leaves and other lateral organs. Current Opinion in Genetics and Development, 2000, 10, 399-404.	1.5	44
121	Mechanisms that control knox gene expression in the Arabidopsis shoot. Development (Cambridge), 2000, 127, 5523-32.	1.2	186
122	Evolutionary Changes in Floral Structure withinLepidiumL. (Brassicaceae). International Journal of Plant Sciences, 1999, 160, 917-929.	0.6	56
123	4 Molecular Genetics of Gynoecium Development in Arabidopsis. Current Topics in Developmental Biology, 1999, 45, 155-205.	1.0	150
124	Distinct Mechanisms Promote Polarity Establishment in Carpels of Arabidopsis. Cell, 1999, 99, 199-209.	13.5	359
125	CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development (Cambridge), 1999, 126, 2387-96.	1.2	225
126	Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development (Cambridge), 1999, 126, 4117-28.	1.2	299

#	Article	IF	CITATIONS
127	Patterns of Petal and Stamen Reduction in Australian Species of Lepidium L. (Brassicaceae). International Journal of Plant Sciences, 1998, 159, 65-74.	0.6	32
128	Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. Journal of Biosciences, 1997, 22, 515-527.	0.5	128
129	Manipulating floral organ identity. Current Biology, 1993, 3, 90-93.	1.8	9
130	Control of flower development in <i>Arabidopsis thaliana</i> by <i>APETALA1</i> and interacting genes. Development (Cambridge), 1993, 119, 721-743.	1.2	608
131	Vectors for plant transformation and cosmid libraries. Gene, 1992, 117, 161-167.	1.0	30
132	Manipulation of flower structure in transgenic tobacco. Cell, 1992, 71, 133-143.	13.5	244
133	SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development (Cambridge), 1992, 114, 599-615.	1.2	118
134	Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development Plant Cell, 1991, 3, 749-758.	3.1	324
135	Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell, 1991, 65, 991-1002.	13.5	655
136	Expression of the Arabidopsis Floral Homeotic Gene AGAMOUS Is Restricted to Specific Cell Types Late in Flower Development. Plant Cell, 1991, 3, 749.	3.1	49
137	A genetic and molecular model for flower development in <i>Arabidopsis thaliana</i> . Development (Cambridge), 1991, 113, 157-167.	1.2	136
138	Genetic interactions among floral homeotic genes of Arabidopsis. Development (Cambridge), 1991, 112, 1-20.	1.2	467
139	Genetic control of pattern formation during flower development in Arabidopsis. Symposia of the Society for Experimental Biology, 1991, 45, 89-115.	0.0	10
140	The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 1990, 346, 35-39.	13.7	1,643
141	Early flower development in Arabidopsis Plant Cell, 1990, 2, 755-767.	3.1	1,979
142	Genes directing flower development in Arabidopsis Plant Cell, 1989, 1, 37-52.	3.1	1,200
143	Genes Directing Flower Development in Arabidopsis. Plant Cell, 1989, 1, 37.	3.1	228

144 MicroRNAs: Micro-managing the Plant Genome. , 0, , 244-278.