Duraiswamy Navaneetham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11236195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	P1 and P2' site mutations convert protease nexin-2 from a factor XIa inhibitor to a plasmin inhibitor. Journal of Biochemistry, 2013, 153, 221-231.	1.7	7
2	The kunitz protease inhibitor domain of protease nexin-2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis. Blood, 2012, 120, 671-677.	1.4	42
3	The Role of Factor XIa (FXIa) Catalytic Domain Exosite Residues in Substrate Catalysis and Inhibition by the Kunitz Protease Inhibitor Domain of Protease Nexin 2*. Journal of Biological Chemistry, 2011, 286, 31904-31914.	3.4	4
4	Determinants of Affinity and Proteolytic Stability in Interactions of Kunitz Family Protease Inhibitors with Mesotrypsin. Journal of Biological Chemistry, 2010, 285, 36884-36896.	3.4	43
5	The Amyloid Precursor Protein/Protease Nexin 2 Kunitz Inhibitor Domain Is a Highly Specific Substrate of Mesotrypsin. Journal of Biological Chemistry, 2010, 285, 1939-1949.	3.4	35
6	Mechanisms and specificity of factor XIa and trypsin inhibition by protease nexin 2 and basic pancreatic trypsin inhibitor. Journal of Biochemistry, 2010, 148, 467-479.	1.7	22
7	Structural and Mutational Analysis of Canonical Loop Residues In Protease Nexin 2 Involved In Factor XIa and Trypsin Inhibition Blood, 2010, 116, 1147-1147.	1.4	18
8	The Role of the P1 Residue of Protease Nexin 2 and Basic Pancreatic Trypsin Inhibitor in the Mechanism of Factor XIa Inhibition Blood, 2008, 112, 2015-2015.	1.4	0
9	Macromolecular Substrate-Binding Exosites on Both the Heavy and Light Chains of Factor XIa Mediate the Formation of the Michaelis Complex Required for Factor IX-Activation. Biochemistry, 2007, 46, 9830-9839.	2.5	12
10	Structural and Mutational Analyses of the Molecular Interactions between the Catalytic Domain of Factor XIa and the Kunitz Protease Inhibitor Domain of Protease Nexin 2. Journal of Biological Chemistry, 2005, 280, 36165-36175.	3.4	62
11	Factor IX Substrate Binding Exosite on the Light Chain of Factor Xia Blood, 2005, 106, 1959-1959.	1.4	1
12	Human thymuses express incomplete sets of muscle acetylcholine receptor subunit transcripts that seldom include the ? subunit. Muscle and Nerve, 2001, 24, 203-210.	2.2	36
13	Neuronal nicotinic receptors in non-neuronal cells: new mediators of tobacco toxicity?. European Journal of Pharmacology, 2000, 393, 279-294.	3.5	151
14	T Cell Recognition of the Acetylcholine Receptor in Myasthenia Gravisa. Annals of the New York Academy of Sciences, 1998, 841, 283-308.	3.8	35
15	Acetylcholine Receptor-specific CD4+ T Cells in Myasthenia Gravis Patients Have Individual, but Restricted TCR Vbeta Usagea. Annals of the New York Academy of Sciences, 1998, 841, 324-328.	3.8	3
16	TCR-Vβ Usage in the Thymus and Blood of Myasthenia Gravis Patients. Journal of Autoimmunity, 1998, 11, 621-633.	6.5	18
17	Human and Rodent Bronchial Epithelial Cells Express Functional Nicotinic Acetylcholine Receptors. Molecular Pharmacology, 1998, 54, 779-788.	2.3	219
18	TCR Vβ Usage by Acetylcholine Receptor-Specific CD4+T Cells in Myasthenia Gravis. Journal of Autoimmunity, 1997, 10, 203-217.	6.5	12

#	Article	IF	CITATIONS
19	TCR Vβ Usage of TSH Receptor-specific CD4+T Cells in Graves' Disease Patients and Healthy Humans. Journal of Autoimmunity, 1997, 10, 479-489.	6.5	2
20	Epitopes for human CD4+ cells on diphtheria toxin: Structural features of sequence segments forming epitopes recognized by most subjects. European Journal of Immunology, 1995, 25, 3207-3214.	2.9	44