Daniel Irimia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1123566/publications.pdf

Version: 2024-02-01

194 papers 20,107 citations

64 h-index 137 g-index

206 all docs

206 docs citations

206 times ranked 24789 citing authors

#	Article	IF	CITATIONS
1	Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007, 450, 1235-1239.	13.7	3,272
2	Detection of Mutations in <i>EGFR </i> ii> in Circulating Lung-Cancer Cells. New England Journal of Medicine, 2008, 359, 366-377.	13.9	1,602
3	Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18392-18397.	3.3	1,454
4	Continuous inertial focusing, ordering, and separation of particles in microchannels. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18892-18897.	3.3	1,408
5	Blood-on-a-Chip. Annual Review of Biomedical Engineering, 2005, 7, 77-103.	5.7	579
6	Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab on A Chip, 2010, 10, 505-511.	3.1	462
7	Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on A Chip, 2008, 8, 1262.	3.1	444
8	Asymmetry and Aging of Mycobacterial Cells Lead to Variable Growth and Antibiotic Susceptibility. Science, 2012, 335, 100-104.	6.0	411
9	Malaria-Infected Erythrocyte-Derived Microvesicles Mediate Cellular Communication within the Parasite Population and with the Host Immune System. Cell Host and Microbe, 2013, 13, 521-534.	5.1	356
10	Equilibrium Separation and Filtration of Particles Using Differential Inertial Focusing. Analytical Chemistry, 2008, 80, 2204-2211.	3.2	354
11	A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects. Lab on A Chip, 2007, 7, 170-178.	3.1	312
12	Pediatric Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Clinical Presentation, Infectivity, and Immune Responses. Journal of Pediatrics, 2020, 227, 45-52.e5.	0.9	288
13	Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nature Communications, 2015, 6, 8490.	5.8	283
14	A Zebrafish Compound Screen Reveals Modulation of Neutrophil Reverse Migration as an Anti-Inflammatory Mechanism. Science Translational Medicine, 2014, 6, 225ra29.	5.8	229
15	Rapid Appearance of Resolvin Precursors in Inflammatory Exudates: Novel Mechanisms in Resolution. Journal of Immunology, 2008, 181, 8677-8687.	0.4	220
16	Universal Microfluidic Gradient Generator. Analytical Chemistry, 2006, 78, 3472-3477.	3.2	208
17	A high-throughput microfluidic real-time gene expression living cell array. Lab on A Chip, 2007, 7, 77-85.	3.1	200
18	Spontaneous migration of cancer cells under conditions of mechanical confinement. Integrative Biology (United Kingdom), 2009, 1, 506.	0.6	199

#	Article	IF	CITATIONS
19	Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17460-17465.	3.3	188
20	Collective and individual migration following the epithelial–mesenchymal transition. Nature Materials, 2014, 13, 1063-1071.	13.3	169
21	Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab on A Chip, 2006, 6, 191-198.	3.1	168
22	Clinical microfluidics for neutrophil genomics and proteomics. Nature Medicine, 2010, 16, 1042-1047.	15.2	168
23	Three-Dimensional Blood-Brain Barrier Model for in vitro Studies of Neurovascular Pathology. Scientific Reports, 2015, 5, 15222.	1.6	162
24	Mitochondrial Localization and the Persistent Migration of Epithelial Cancer cells. Biophysical Journal, 2013, 104, 2077-2088.	0.2	161
25	TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton. Journal of Cell Science, 2008, 121, 3476-3486.	1.2	159
26	Resolvin E2 Formation and Impact in Inflammation Resolution. Journal of Immunology, 2012, 188, 4527-4534.	0.4	157
27	Neutrophil cytoplasts induce T $<$ sub $>$ H $<$ /sub $>$ 17 differentiation and skew inflammation toward neutrophilia in severe asthma. Science Immunology, 2018, 3, .	5 . 6	157
28	MYC regulation of a "poor-prognosis―metastatic cancer cell state. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3698-3703.	3.3	153
29	Proresolving and cartilage-protective actions of resolvin D1 in inflammatory arthritis. JCl Insight, $2016, 1, e85922.$	2.3	150
30	Migration of neutrophils targeting amyloid plaques in Alzheimer's disease mouse model. Neurobiology of Aging, 2014, 35, 1286-1292.	1.5	146
31	Humoral signatures of protective and pathological SARS-CoV-2 infection in children. Nature Medicine, 2021, 27, 454-462.	15.2	137
32	Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab on A Chip, 2007, 7, 746-755.	3.1	136
33	Polar stimulation and constrained cell migration in microfluidic channels. Lab on A Chip, 2007, 7, 1783.	3.1	133
34	â€~Living cantilever arrays' for characterization of mass of single live cells in fluids. Lab on A Chip, 2008, 8, 1034.	3.1	123
35	Differential effect of threeâ€repeat and fourâ€repeat tau on mitochondrial axonal transport. Journal of Neurochemistry, 2009, 111, 417-427.	2.1	123
36	Microvortex for focusing, guiding and sorting of particles. Lab on A Chip, 2008, 8, 2128.	3.1	117

#	Article	IF	CITATIONS
37	Microfluidic proportional flow controller. Journal of Micromechanics and Microengineering, 2010, 20, 115020.	1.5	113
38	Burn Injury Reduces Neutrophil Directional Migration Speed in Microfluidic Devices. PLoS ONE, 2010, 5, e11921.	1.1	111
39	Microfluidic platform for the quantitative analysis of leukocyte migration signatures. Nature Communications, 2014, 5, 4787.	5.8	108
40	Neutrophil chemorepulsion in defined interleukin-8 gradients in vitro and in vivo. Journal of Leukocyte Biology, 2006, 79, 539-554.	1.5	107
41	Murine B16 Melanomas Expressing High Levels of the Chemokine Stromal-Derived Factor-1/CXCL12 Induce Tumor-Specific T Cell Chemorepulsion and Escape from Immune Control. Journal of Immunology, 2006, 176, 2902-2914.	0.4	105
42	Single-Cell Chemical Lysis in Picoliter-Scale Closed Volumes Using a Microfabricated Device. Analytical Chemistry, 2004, 76, 6137-6143.	3.2	100
43	Resolvin <scp>D</scp> 2 prevents secondary thrombosis and necrosis in a mouse burn wound model. Wound Repair and Regeneration, 2013, 21, 35-43.	1.5	98
44	Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel. Physical Review Applied, 2014, 1, .	1.5	98
45	Human Neurospheroid Arrays for In Vitro Studies of Alzheimer's Disease. Scientific Reports, 2018, 8, 2450.	1.6	98
46	Diagnosis of sepsis from a drop of blood by measurement of spontaneous neutrophil motility in a microfluidic assay. Nature Biomedical Engineering, 2018, 2, 207-214.	11.6	96
47	Microfluidic chambers for monitoring leukocyte trafficking and humanized nano-proresolving medicines interactions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20560-20565.	3.3	91
48	Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21006-21011.	3.3	89
49	A short pulse (7â€,μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams. Review of Scientific Instruments, 2009, 80, 113303.	0.6	88
50	Ultrasensitive Detection of Lowâ€Abundance Surfaceâ€Marker Protein Using Isothermal Rolling Circle Amplification in a Microfluidic Nanoliter Platform. Small, 2011, 7, 395-400.	5.2	87
51	Directional decisions during neutrophil chemotaxis inside bifurcating channels. Integrative Biology (United Kingdom), 2010, 2, 639.	0.6	85
52	Tau reduction in the presence of amyloid- \hat{l}^2 prevents tau pathology and neuronal death in vivo. Brain, 2018, 141, 2194-2212.	3.7	84
53	Microfluidic Chemotaxis Platform for Differentiating the Roles of Soluble and Bound Amyloid- \hat{l}^2 on Microglial Accumulation. Scientific Reports, 2013, 3, 1823.	1.6	82
54	Resolvin D2 restores neutrophil directionality and improves survival after burns. FASEB Journal, 2013, 27, 2270-2281.	0.2	81

#	Article	IF	CITATIONS
55	A Microchip Approach for Practical Label-Free CD4+ T-Cell Counting of HIV-Infected Subjects in Resource-Poor Settings. Journal of Acquired Immune Deficiency Syndromes (1999), 2007, 45, 257-261.	0.9	81
56	Decoding Functional Metabolomics with Docosahexaenoyl Ethanolamide (DHEA) Identifies Novel Bioactive Signals. Journal of Biological Chemistry, 2011, 286, 31532-31541.	1.6	79
57	Epithelial cell guidance by self-generated EGF gradients. Integrative Biology (United Kingdom), 2012, 4, 259.	0.6	79
58	Cell handling using microstructured membranes. Lab on A Chip, 2006, 6, 345.	3.1	78
59	Neutrophils self-limit swarming to contain bacterial growth in vivo. Science, 2021, 372, .	6.0	76
60	A genome-wide RNAi screen identifies multiple RSK-dependent regulators of cell migration. Genes and Development, 2010, 24, 2654-2665.	2.7	74
61	Microscale arrays for the profiling of start and stop signals coordinating human-neutrophil swarming. Nature Biomedical Engineering, 2017, 1 , .	11.6	74
62	Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab on A Chip, 2011, 11, 3530.	3.1	73
63	Threeâ€Dimensional Models of the Human Brain Development and Diseases. Advanced Healthcare Materials, 2018, 7, 1700723.	3.9	73
64	Neutrophil Interactions Stimulate Evasive Hyphal Branching by Aspergillus fumigatus. PLoS Pathogens, 2017, 13, e1006154.	2.1	73
65	Spontaneous Neutrophil Migration Patterns during Sepsis after Major Burns. PLoS ONE, 2014, 9, e114509.	1.1	71
66	Kinetics and Mechanism of Intercellular Ice Propagation in a Micropatterned Tissue Construct. Biophysical Journal, 2002, 82, 1858-1868.	0.2	70
67	Neutrophil swarming delays the growth of clusters of pathogenic fungi. Nature Communications, 2020, 11, 2031.	5.8	68
68	A Food and Drug Administration-approved Asthma Therapeutic Agent Impacts Amyloid \hat{l}^2 in the Brain in a Transgenic Model of Alzheimer Disease. Journal of Biological Chemistry, 2015, 290, 1966-1978.	1.6	65
69	Directional memory arises from long-lived cytoskeletal asymmetries in polarized chemotactic cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1267-1272.	3.3	65
70	Synthetic microvascular networks for quantitative analysis of particle adhesion. Biomedical Microdevices, 2008, 10, 585-595.	1.4	64
71	Retrotaxis of human neutrophils during mechanical confinement inside microfluidic channels. Integrative Biology (United Kingdom), 2014, 6, 175-183.	0.6	62
72	Microfluidic Technologies for Temporal Perturbations of Chemotaxis. Annual Review of Biomedical Engineering, 2010, 12, 259-284.	5.7	60

#	Article	IF	Citations
73	Subsets of human CD4 ⁺ regulatory T cells express the peripheral homing receptor CXCR3. European Journal of Immunology, 2011, 41, 2291-2302.	1.6	59
74	Efficient Front-Rear Coupling in Neutrophil Chemotaxis by Dynamic Myosin II Localization. Developmental Cell, 2019, 49, 189-205.e6.	3.1	59
75	Cell–cell interaction modulates neuroectodermal specification of embryonic stem cells. Neuroscience Letters, 2008, 438, 190-195.	1.0	58
76	Neutrophil migration assay from a drop of blood. Lab on A Chip, 2008, 8, 2054.	3.1	56
77	Porous microwells for geometry-selective, large-scale microparticle arrays. Nature Materials, 2017, 16, 139-146.	13.3	56
78	Inflammation-on-a-Chip: Probing the Immune System Ex Vivo. Trends in Biotechnology, 2018, 36, 923-937.	4.9	55
79	Whole blood human neutrophil trafficking in a microfluidic model of infection and inflammation. Lab on A Chip, 2015, 15, 2625-2633.	3.1	54
80	Nucleation and solidification in static arrays of monodisperse drops. Lab on A Chip, 2009, 9, 1859.	3.1	49
81	A microscale, full-thickness, human skin on a chip assay simulating neutrophil responses to skin infection and antibiotic treatments. Lab on A Chip, 2019, 19, 3094-3103.	3.1	47
82	Microfluidic assay for precise measurements of mouse, rat, and human neutrophil chemotaxis in whole-blood droplets. Journal of Leukocyte Biology, 2016, 100, 241-247.	1.5	46
83	Measuring neutrophil speed and directionality during chemotaxis, directly from a droplet of whole blood. Technology, 2013, 01, 49-57.	1.4	42
84	Multiple phenotypes in Huntington disease mouse neural stem cells. Molecular and Cellular Neurosciences, 2012, 50, 70-81.	1.0	41
85	Gene Expression of Proresolving Lipid Mediator Pathways Is Associated With Clinical Outcomes in Trauma Patients. Critical Care Medicine, 2015, 43, 2642-2650.	0.4	41
86	A highly-occupied, single-cell trapping microarray for determination of cell membrane permeability. Lab on A Chip, 2017, 17, 4077-4088.	3.1	41
87	Neutrophil chemotaxis and transcriptomics in term and preterm neonates. Translational Research, 2017, 190, 4-15.	2.2	41
88	The Role of Physical Stabilization in Whole Blood Preservation. Scientific Reports, 2016, 6, 21023.	1.6	38
89	Elastomeric Microchip Electrospray Emitter for Stable Cone-Jet Mode Operation in the Nanoflow Regime. Analytical Chemistry, 2008, 80, 3824-3831.	3.2	36
90	On-demand, competing gradient arrays for neutrophil chemotaxis. Lab on A Chip, 2014, 14, 972-978.	3.1	36

#	Article	IF	Citations
91	Resolvin T-series reduce neutrophil extracellular traps. Blood, 2022, 139, 1222-1233.	0.6	36
92	In situ characterization of a cold and short pulsed molecular beam by femtosecond ion imaging. Physical Chemistry Chemical Physics, 2009, 11, 3958.	1.3	34
93	Human Neutrophils Are Primed by Chemoattractant Gradients for Blocking the Growth of <i>Aspergillus fumigatus </i> . Journal of Infectious Diseases, 2016, 213, 465-475.	1.9	34
94	Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin–Biotin Interactions. Langmuir, 2015, 31, 13165-13171.	1.6	29
95	Kinetics of Intracellular Ice Formation in One-Dimensional Arrays of Interacting Biological Cells. Biophysical Journal, 2005, 88, 647-660.	0.2	27
96	Directional reorientation of migrating neutrophils is limited by suppression of receptor input signaling at the cell rear through myosin II activity. Nature Communications, 2021, 12, 6619.	5.8	27
97	A microfluidic bioreactor for increased active retrovirus output. Lab on A Chip, 2008, 8, 75-80.	3.1	26
98	Microfluidic Leukocyte Isolation for Gene Expression Analysis in Critically Ill Hospitalized Patients. Clinical Chemistry, 2008, 54, 891-900.	1.5	26
99	Adaptive-Control Model for Neutrophil Orientation in the Direction of Chemical Gradients. Biophysical Journal, 2009, 96, 3897-3916.	0.2	26
100	Netrin-1 Augments Chemokinesis in CD4+ T Cells In Vitro and Elicits a Proinflammatory Response In Vivo. Journal of Immunology, 2016, 197, 1389-1398.	0.4	26
101	Capillary plexuses are vulnerable to neutrophil extracellular traps. Integrative Biology (United) Tj ETQq1 1 0.7843	14.rgBT /C	Overlock 10
102	Temporal gradients limit the accumulation of neutrophils toward sources of chemoattractant. Microsystems and Nanoengineering, 2017, 3, .	3.4	25
103	Spleen Tyrosine Kinase Is a Critical Regulator of Neutrophil Responses to <i>Candida</i> Species. MBio, 2020, 11, .	1.8	25
104	Chemotaxis and swarming in differentiated HL-60 neutrophil-like cells. Scientific Reports, 2021, 11, 778.	1.6	25
105	Desiccation kinetics of biopreservation solutions in microchannels. Journal of Applied Physics, 2006, 99, 064703.	1.1	22
106	The Reaction Microscope: Imaging and Pulse Shaping Control in Photodynamics. ChemPhysChem, 2011, 12, 1459-1473.	1.0	22
107	Big insights from small volumes: deciphering complex leukocyte behaviors using microfluidics. Journal of Leukocyte Biology, 2016, 100, 291-304.	1.5	22
108	Microfluidic arenas for war games between neutrophils and microbes. Lab on A Chip, 2019, 19, 1205-1216.	3.1	22

#	Article	IF	Citations
109	Chemotaxing neutrophils enter alternate branches at capillary bifurcations. Nature Communications, 2020, 11, 2385.	5.8	22
110	Preservative solution that stabilizes erythrocyte morphology and leukocyte viability under ambient conditions. Scientific Reports, 2017, 7, 5658.	1.6	21
111	Convergent and Divergent Migratory Patterns of Human Neutrophils inside Microfluidic Mazes. Scientific Reports, 2018, 8, 1887.	1.6	20
112	Mimicry of Central-Peripheral Immunity in Alzheimer's Disease and Discovery of Neurodegenerative Roles in Neutrophil. Frontiers in Immunology, 2019, 10, 2231.	2.2	20
113	Microstructured Surface Arrays for Injection of Zebrafish Larvae. Zebrafish, 2017, 14, 140-145.	0.5	19
114	Dynamic Profiling of Antitumor Activity of CAR T Cells Using Micropatterned Tumor Arrays. Advanced Science, 2019, 6, 1901829.	5.6	19
115	Development of a Cell Patterning Technique Using Poly(Ethylene Glycol) Disilane. Biomedical Microdevices, 2003, 5, 185-194.	1.4	18
116	Microfluidic Platform for Measuring Neutrophil Chemotaxis from Unprocessed Whole Blood. Journal of Visualized Experiments, 2014, , .	0.2	18
117	Microfluidic mazes to characterize T-cell exploration patterns following activation in vitro. Integrative Biology (United Kingdom), 2015, 7, 1423-1431.	0.6	18
118	Kidney and Liver Injuries After Major Burns in Rats Are Prevented by Resolvin D2. Critical Care Medicine, 2016, 44, e241-e252.	0.4	18
119	Microfluidic Assay Measures Increased Neutrophil Extracellular Traps Circulating in Blood after Burn Injuries. Scientific Reports, 2018, 8, 16983.	1.6	18
120	Antibiotic-chemoattractants enhance neutrophil clearance of Staphylococcus aureus. Nature Communications, 2021, 12, 6157.	5.8	18
121	Megakaryocytes contain extranuclear histones and may be a source of platelet-associated histones during sepsis. Scientific Reports, 2020, 10, 4621.	1.6	17
122	Dynamics of diffusive cell signaling relays. ELife, 2020, 9, .	2.8	17
123	Toward elucidating the mechanism of femtosecond pulse shaping control in photodynamics of molecules by velocity map photoelectron and ion imaging. Journal of Chemical Physics, 2010, 132, 234302.	1.2	16
124	"Universal" vitrification of cells by ultra-fast cooling. Technology, 2015, 03, 64-71.	1.4	16
125	Technical Advance: Changes in neutrophil migration patterns upon contact with platelets in a microfluidic assay. Journal of Leukocyte Biology, 2017, 101, 797-806.	1.5	16
126	Bifunctional Small Molecules Enhance Neutrophil Activities Against Aspergillus fumigatus in vivo and in vitro. Frontiers in Immunology, 2019, 10, 644.	2.2	16

#	Article	IF	Citations
127	A Worldwide Competition to Compare the Speed and Chemotactic Accuracy of Neutrophil-Like Cells. PLoS ONE, 2016, 11, e0154491.	1.1	16
128	Genome-wide transcriptome analysis of 150 cell samples. Integrative Biology (United Kingdom), 2009, 1, 99-107.	0.6	15
129	Cell Migration in Confined Environments. Methods in Cell Biology, 2014, 121, 141-153.	0.5	15
130	A neutrophil treadmill to decouple spatial and temporal signals during chemotaxis. Lab on A Chip, 2015, 15, 549-556.	3.1	15
131	New methods for investigation of neuronal migration in embryonic brain explants. Journal of Neuroscience Methods, 2015, 239, 80-84.	1.3	15
132	Loss of Coordinated Neutrophil Responses to the Human Fungal Pathogen, Candida albicans, in Patients With Cirrhosis. Hepatology Communications, 2021, 5, 502-515.	2.0	15
133	Coherent Oscillatory Femtosecond Dynamics in Multichannel Photodynamics of NO ₂ Studied by Spatially Masked Electron Imaging. Journal of Physical Chemistry A, 2010, 114, 3157-3166.	1.1	14
134	Neutrophil dysfunction in cystic fibrosis. Journal of Cystic Fibrosis, 2021, 20, 1062-1071.	0.3	14
135	Microfluidic platform to evaluate migration of cells from patients with DYT1 dystonia. Journal of Neuroscience Methods, 2014, 232, 181-188.	1.3	13
136	Translational implications of endothelial cell dysfunction in association with chronic allograft rejection. Pediatric Nephrology, 2016, 31, 41-51.	0.9	13
137	A Portable Chemotaxis Platform for Short and Long Term Analysis. PLoS ONE, 2012, 7, e44995.	1.1	12
138	Stochastic variations of migration speed between cells in clonal populations. Technology, 2014, 02, 185-188.	1.4	12
139	Sepsis is associated with reduced spontaneous neutrophil migration velocity in human adults. PLoS ONE, 2018, 13, e0205327.	1.1	12
140	Impact of toll-like receptor 4 stimulation on human neonatal neutrophil spontaneous migration, transcriptomics, and cytokine production. Journal of Molecular Medicine, 2018, 96, 673-684.	1.7	12
141	Progressive mechanical confinement of chemotactic neutrophils induces arrest, oscillations, and retrotaxis. Journal of Leukocyte Biology, 2018, 104, 1253-1261.	1.5	12
142	On a Chip. IEEE Pulse, 2011, 2, 19-27.	0.1	11
143	Fast sorting of CD4+ T cells from whole blood using glass microbubbles. Technology, 2015, 03, 38-44.	1.4	11
144	Cytokine Augmentation Reverses Transplant Recipient Neutrophil Dysfunction Against the Human Fungal Pathogen <i>Candida albicans</i> Journal of Infectious Diseases, 2021, 224, 894-902.	1.9	11

#	Article	IF	CITATIONS
145	Photoelectron photoion coincidence imaging of ultrafast control in multichannel molecular dynamics. Faraday Discussions, 2011, 153, 173.	1.6	10
146	Resolvin D2 Limits Secondary Tissue Necrosis After Burn Wounds in Rats. Journal of Burn Care and Research, 2017, 39, 1.	0.2	10
147	Microstructured Devices for Optimized Microinjection and Imaging of Zebrafish Larvae. Journal of Visualized Experiments, 2017, , .	0.2	10
148	Human Neutrophils Respond to Complement Activation and Inhibition in Microfluidic Devices. Frontiers in Immunology, 2021, 12, 777932.	2.2	10
149	No man's land: Speciesâ€specific formation of exclusion zones bordering <i>Actinomyces graevenitzii</i> i> microcolonies in nanoliter cultures. MicrobiologyOpen, 2021, 10, e1137.	1.2	9
150	Crowdsourced analysis of fungal growth and branching on microfluidic platforms. PLoS ONE, 2021, 16, e0257823.	1.1	9
151	Microfluidics for T―Lymphocyte Cell Separation and Inflammation Monitoring in Burn Patients. Clinical and Translational Science, 2011, 4, 63-68.	1.5	8
152	The Arp2/3 inhibitory protein Arpin is dispensable for chemotaxis. Biology of the Cell, 2017, 109, 162-166.	0.7	8
153	Rapid antibiotic sensitivity testing in microwell arrays. Technology, 2017, 05, 107-114.	1.4	8
154	Neutrophil Chemotaxis in One Droplet of Blood Using Microfluidic Assays. Methods in Molecular Biology, 2018, 1749, 351-360.	0.4	8
155	Chemical gradientâ€mediated melting curve analysis for genotyping of SNPs. Electrophoresis, 2009, 30, 2536-2543.	1.3	7
156	Measuring spontaneous neutrophil motility signatures from a drop of blood using microfluidics. Methods in Cell Biology, 2018, 147, 93-107.	0.5	7
157	Neutrophil functional profiling and cytokine augmentation for patients with multiple recurrent infections: A case study. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 986-988.	2.0	7
158	Patterning of interconnected human brain spheroids. Lab on A Chip, 2021, 21, 3532-3540.	3.1	7
159	Multifactorial assessment of neutrophil chemotaxis efficiency from a drop of blood. Journal of Leukocyte Biology, 2022, 111, 1175-1184.	1.5	7
160	Controlled induction of distributed microdeformation in wounded tissue via a microchamber array dressing. Journal of Biomedical Materials Research - Part A, 2010, 95A, 333-340.	2.1	6
161	Practical challenges in the energyâ€based control of molecular transformations in chemical reactors. AICHE Journal, 2014, 60, 3392-3405.	1.8	6
162	Large-scale patterning of living colloids for dynamic studies of neutrophil–microbe interactions. Lab on A Chip, 2018, 18, 1514-1520.	3.1	6

#	Article	IF	Citations
163	Neutrophil Swarms Are More Than the Accumulation of Cells. Microbiology Insights, 2020, 13, 117863612097827.	0.9	6
164	Transfusable neutrophil progenitors as cellular therapy for the prevention of invasive fungal infections. Journal of Leukocyte Biology, 2022, 111, 1133-1145.	1.5	6
165	MICROFLUIDIC DEVICE FOR EXAMINING DIRECTIONAL SENSING IN DENDRITIC CELL CHEMOTAXIS. Nano LIFE, 2012, 02, 1250011.	0.6	5
166	Ex Vivo Human Neutrophil Swarming Against Live Microbial Targets. Methods in Molecular Biology, 2020, 2087, 107-116.	0.4	5
167	Microfluidic capture of chromatin fibres measures neutrophil extracellular traps (NETs) released in a drop of human blood. Lab on A Chip, 2022, 22, 936-944.	3.1	5
168	Parametric Analysis of Intercellular Ice Propagation during Cryosurgery, Simulated Using Monte Carlo Techniques. Technology in Cancer Research and Treatment, 2004, 3, 113-123.	0.8	4
169	Host defense against fungal pathogens: Adaptable neutrophil responses and the promise of therapeutic opportunities?. PLoS Pathogens, 2021, 17, e1009691.	2.1	4
170	Human erythrocyte fragmentation during exâ€vivo pig organ perfusion. Xenotransplantation, 2022, 29, e12729.	1.6	4
171	TLR Signaling Rescues Fungicidal Activity in Syk-Deficient Neutrophils. Journal of Immunology, 2022, 208, 1664-1674.	0.4	3
172	Monocyte anisocytosis increases during multisystem inflammatory syndrome in children with cardiovascular complications. BMC Infectious Diseases, 2022, 22, .	1.3	3
173	Trapped Chromatin Fibers Damage Flowing Red Blood Cells. Advanced Biology, 2018, 2, 1800040.	3.0	2
174	Microfluidic Assays for Probing Neutrophil- <i>Borrelia</i> Interactions in Blood During Lyme Disease. Cells Tissues Organs, 2022, 211, 313-323.	1.3	2
175	Cell manipulation in microsystems for clinical and biological applications. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	1
176	Capillary Force Valves. , 2008, , 192-196.		1
177	Cutting edge: Electronic counting of white blood cells. Lab on A Chip, 2009, 9, 2875.	3.1	0
178	Analyzing Chemorepulsion: A Critical Leukocyte Migration Pattern With Potential to Protect the Graft Microenvironment Transplantation, 2014, 98, 292.	0.5	0
179	Barotaxis in a Confined Neutrophil. Biophysical Journal, 2014, 106, 360a.	0.2	0
180	Secondary Wound Necrosis is Suppressed by Resolvin D2. Journal of the American College of Surgeons, 2016, 223, e55.	0.2	0

#	Article	IF	CITATIONS
181	Reduced Spontaneous Neutrophil Migration Speed in Healthy Neonates. Journal of the American College of Surgeons, 2017, 225, S156-S157.	0.2	0
182	Maze-Solving Cells. Emergence, Complexity and Computation, 2018, , 365-378.	0.2	0
183	1729. Profiling Human Neutrophil Functional Responses From Solid-Organ and Stem Cell Transplant Recipients to Candida albicans. Open Forum Infectious Diseases, 2019, 6, S634-S634.	0.4	0
184	Assaying leukocyte hallmarks during sepsis. Nature Biomedical Engineering, 2019, 3, 947-948.	11.6	0
185	Primary and Metastatic Pancreatic Cancer Cells Exhibit Differential Migratory Potentials. Pancreas, 2020, 49, 128-134.	0.5	0
186	Reply. Journal of Pediatrics, 2021, 228, 320-323.	0.9	0
187	Reply. Journal of Pediatrics, 2021, 228, 317-319.	0.9	0
188	Monte Carlo Simulation of Ice Formation in Tissues. , 2002, , .		0
189	Abstract 3779: Self-guided migration of cancer epithelial cells in confined environment, 2013, , .		0
190	Capillary Force Valves. , 2014, , 1-7.		0
191	Manipulating Cells, Techniques. , 2014, , 1-4.		0
192	Manipulating Cells, Techniques., 2015, , 1702-1705.		0
193	Pneumatic Valves. , 2008, , 1700-1702.		0
194	Manipulating Cells, Techniques., 2008, , 1048-1050.		0