Goran K Hansson

List of Publications by Citations

Source: https://exaly.com/author-pdf/11235561/goran-k-hansson-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

182 33,477 71 202 h-index g-index citations papers 37,819 7.89 10.3 220 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
202	Inflammation, atherosclerosis, and coronary artery disease. <i>New England Journal of Medicine</i> , 2005 , 352, 1685-95	59.2	6348
201	Progress and challenges in translating the biology of atherosclerosis. <i>Nature</i> , 2011 , 473, 317-25	50.4	2436
200	From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. <i>Circulation</i> , 2003 , 108, 1664-72	16.7	1985
199	The immune response in atherosclerosis: a double-edged sword. <i>Nature Reviews Immunology</i> , 2006 , 6, 508-19	36.5	1682
198	The immune system in atherosclerosis. <i>Nature Immunology</i> , 2011 , 12, 204-12	19.1	1454
197	Inflammation in atherosclerosis: from pathophysiology to practice. <i>Journal of the American College of Cardiology</i> , 2009 , 54, 2129-38	15.1	1415
196	From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. <i>Circulation</i> , 2003 , 108, 1772-8	16.7	886
195	Innate and adaptive immunity in the pathogenesis of atherosclerosis. <i>Circulation Research</i> , 2002 , 91, 281-91	15.7	794
194	Natural regulatory T cells control the development of atherosclerosis in mice. <i>Nature Medicine</i> , 2006 , 12, 178-80	50.5	786
193	Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. <i>Atherosclerosis</i> , 1999 , 145, 33-43	3.1	770
192	Inflammation and atherosclerosis. Annual Review of Pathology: Mechanisms of Disease, 2006, 1, 297-329	34	718
191	Atherosclerosis. Nature Reviews Disease Primers, 2019, 5, 56	51.1	657
190	Immune effector mechanisms implicated in atherosclerosis: from mice to humans. <i>Immunity</i> , 2013 , 38, 1092-104	32.3	456
189	The immunology of atherosclerosis. <i>Nature Reviews Nephrology</i> , 2017 , 13, 368-380	14.9	422
188	Nuclear factor kappa-B and the heart. <i>Journal of the American College of Cardiology</i> , 2001 , 38, 307-14	15.1	376
187	Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. Journal of Clinical Investigation, 2002 , 109, 745-53	15.9	371
186	Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. <i>Journal of Clinical Investigation</i> , 2003 , 112, 1342-50	15.9	310

(2016-2003)

185	Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. <i>Cardiovascular Research</i> , 2003 , 59, 234-40	9.9	270
184	Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. <i>Circulation</i> , 2002 , 105, 1158-61	16.7	267
183	Interleukin-10 Deficiency Increases Atherosclerosis, Thrombosis, and Low-density Lipoproteins in Apolipoprotein E Knockout Mice. <i>Molecular Medicine</i> , 2003 , 9, 10-17	6.2	261
182	CD1d-dependent activation of NKT cells aggravates atherosclerosis. <i>Journal of Experimental Medicine</i> , 2004 , 199, 417-22	16.6	261
181	Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2006 , 26, 136-42	9.4	260
180	Anti-inflammatory therapies for atherosclerosis. <i>Nature Reviews Cardiology</i> , 2015 , 12, 199-211	14.8	251
179	Inflammation and immunity in diseases of the arterial tree: players and layers. <i>Circulation Research</i> , 2015 , 116, 307-11	15.7	249
178	Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. Journal of Clinical Investigation, 2013 , 123, 1323-34	15.9	242
177	Production of the long pentraxin PTX3 in advanced atherosclerotic plaques. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2002 , 22, e10-4	9.4	229
176	Adaptive immunity and atherosclerosis. <i>Clinical Immunology</i> , 2010 , 134, 33-46	9	216
175	Expression of 5-lipoxygenase and leukotriene A4 hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 8161-6	11.5	204
174	T cells in atherogenesis: for better or for worse?. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2006 , 26, 2421-32	9.4	198
173	Innate immunity, macrophage activation, and atherosclerosis. Immunological Reviews, 2007, 219, 187-20	03 1.3	196
172	Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 17501-6	11.5	190
171	Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. <i>Journal of Experimental Medicine</i> , 2010 , 207, 1081-93	16.6	174
170	CD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice. <i>Circulation</i> , 2008 , 117, 1292-301	16.7	169
169	CXCL16/SR-PSOX is an interferon-gamma-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2004 , 24, 750-5	9.4	160
168	Adaptive Response of T and B Cells in Atherosclerosis. <i>Circulation Research</i> , 2016 , 118, 668-78	15.7	155

167	Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2010 , 30, 946-52	9.4	153
166	Enhanced T-cell expression of RANK ligand in acute coronary syndrome: possible role in plaque destabilization. <i>Arteriosclerosis, Thrombosis, and Vascular Biology,</i> 2006 , 26, 857-63	9.4	153
165	Accumulation of foam cells in liver X receptor-deficient mice. <i>Circulation</i> , 2002 , 106, 1147-53	16.7	153
164	NLRP3 Inflammasome Expression and Activation in Human Atherosclerosis. <i>Journal of the American Heart Association</i> , 2016 , 5,	6	150
163	Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. <i>Circulation</i> , 2011 , 123, 1083-91	16.7	143
162	Transforming growth factor-Bignaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. <i>Science Translational Medicine</i> , 2013 , 5, 196ra100	17.5	137
161	Innate immune signals in atherosclerosis. Clinical Immunology, 2010, 134, 5-24	9	137
160	Atherosclerosisan immune disease: The Anitschkov Lecture 2007. Atherosclerosis, 2009, 202, 2-10	3.1	134
159	Dickkopf-1 enhances inflammatory interaction between platelets and endothelial cells and shows increased expression in atherosclerosis. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2009 , 29, 12	28 ² 3 ⁴ 4	129
158	Treating inflammation in atherosclerotic cardiovascular disease: emerging therapies. <i>European Heart Journal</i> , 2009 , 30, 2838-44	9.5	128
157	Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. <i>Molecular Medicine</i> , 2003 , 9, 10-7	6.2	121
156	Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2006 , 26, 864-70	9.4	120
155	Cell-mediated immunity in atherosclerosis. Current Opinion in Lipidology, 1997, 8, 301-11	4.4	115
154	Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. <i>Journal of Clinical Investigation</i> , 2013 , 123, 179-88	15.9	113
153	Association of hypo-responsive toll-like receptor 4 variants with risk of myocardial infarction. <i>European Heart Journal</i> , 2004 , 25, 1447-53	9.5	113
152	Enhanced expression of the homeostatic chemokines CCL19 and CCL21 in clinical and experimental atherosclerosis: possible pathogenic role in plaque destabilization. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2007 , 27, 614-20	9.4	111
151	Immunomodulation of atherosclerosis: implications for vaccine development. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2005 , 25, 18-28	9.4	107
150	Effects of sex and age on atherosclerosis and autoimmunity in apoE-deficient mice. <i>Atherosclerosis</i> , 1999 , 145, 301-8	3.1	107

(2017-1993)

149	Adhesion molecule expression on cerebrospinal fluid 1 lymphocytes: evidence for common recruitment mechanisms in multiple sclerosis, aseptic meningitis, and normal controls. <i>Annals of Neurology</i> , 1993 , 34, 155-61	9.4	104
148	Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. <i>Circulation Research</i> , 2005 , 96, 427-34	15.7	100
147	Chemokines and atherosclerosis. <i>Annals of Medicine</i> , 2004 , 36, 98-118	1.5	96
146	5-Lipoxygenase-activating protein: a potential link between innate and adaptive immunity in atherosclerosis and adipose tissue inflammation. <i>Circulation Research</i> , 2007 , 100, 946-9	15.7	93
145	Association of genetic risk variants with expression of proximal genes identifies novel susceptibility genes for cardiovascular disease. <i>Circulation: Cardiovascular Genetics</i> , 2010 , 3, 365-73		89
144	Cellular immunity, low-density lipoprotein and atherosclerosis: break of tolerance in the artery wall. <i>Thrombosis and Haemostasis</i> , 2011 , 106, 779-86	7	86
143	The discovery of cellular immunity in the atherosclerotic plaque. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2009 , 29, 1714-7	9.4	86
142	Leukotriene receptors in atherosclerosis. <i>Annals of Medicine</i> , 2006 , 38, 493-502	1.5	85
141	Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. <i>Thrombosis and Haemostasis</i> , 2011 , 106, 353-62	7	83
140	The macrophage scavenger receptor type A directs modified proteins to antigen presentation. <i>European Journal of Immunology</i> , 1999 , 29, 512-21	6.1	83
139	ERV1/ChemR23 Signaling Protects Against Atherosclerosis by Modifying Oxidized Low-Density Lipoprotein Uptake and Phagocytosis in Macrophages. <i>Circulation</i> , 2018 , 138, 1693-1705	16.7	81
138	Ultrastructural studies on the localization of IgG in the aortic endothelium and subendothelial intima of atherosclerotic and nonatherosclerotic rabbits. <i>Experimental and Molecular Pathology</i> , 1980 , 33, 302-15	4.4	78
137	Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. <i>Cardiovascular Research</i> , 2013 , 99, 364-73	9.9	76
136	The use of network analyses for elucidating mechanisms in cardiovascular disease. <i>Molecular BioSystems</i> , 2010 , 6, 289-304		76
135	Highlights of 10 years of immunology in Nature Reviews Immunology. <i>Nature Reviews Immunology</i> , 2011 , 11, 693-702	36.5	75
134	Toll-like receptor 7 protects from atherosclerosis by constraining "inflammatory" macrophage activation. <i>Circulation</i> , 2012 , 126, 952-62	16.7	73
133	Prediction of ischemic events on the basis of transcriptomic and genomic profiling in patients undergoing carotid endarterectomy. <i>Molecular Medicine</i> , 2012 , 18, 669-75	6.2	72
132	Inflammation and Atherosclerosis: The End of a Controversy. <i>Circulation</i> , 2017 , 136, 1875-1877	16.7	71

131	Cytokine-induced expression of nitric oxide synthase results in nitrosylation of heme and nonheme iron proteins in vascular smooth muscle cells. <i>Experimental Cell Research</i> , 1994 , 214, 418-28	4.2	71
130	Kruppel-like factor KLF10 targets transforming growth factor-beta1 to regulate CD4(+)CD25(-) T cells and T regulatory cells. <i>Journal of Biological Chemistry</i> , 2009 , 284, 24914-24	5.4	70
129	Lack of complement factor C3, but not factor B, increases hyperlipidemia and atherosclerosis in apolipoprotein E-/- low-density lipoprotein receptor-/- mice. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2004 , 24, 1062-7	9.4	70
128	Inflammation and immune response in atherosclerosis. <i>Current Atherosclerosis Reports</i> , 1999 , 1, 150-5	6	70
127	Human arterial smooth muscle cells in culture. Effects of platelet-derived growth factor and heparin on growth in vitro. <i>Experimental Cell Research</i> , 1988 , 176, 319-35	4.2	70
126	Upregulation of the 5-lipoxygenase pathway in human aortic valves correlates with severity of stenosis and leads to leukotriene-induced effects on valvular myofibroblasts. <i>Circulation</i> , 2011 , 123, 13	16-275	69
125	MicroRNA-210 Enhances Fibrous Cap Stability in Advanced Atherosclerotic Lesions. <i>Circulation Research</i> , 2017 , 120, 633-644	15.7	68
124	Activation of inducible nitric oxide synthase/nitric oxide by curli fibers leads to a fall in blood pressure during systemic Escherichia coli infection in mice. <i>Journal of Infectious Diseases</i> , 2001 , 183, 612	<u>2</u> -3	67
123	The role of the FPR2/ALX receptor in atherosclerosis development and plaque stability. <i>Cardiovascular Research</i> , 2015 , 105, 65-74	9.9	66
122	The tryptophan metabolite 3-hydroxyanthranilic acid lowers plasma lipids and decreases atherosclerosis in hypercholesterolaemic mice. <i>European Heart Journal</i> , 2012 , 33, 2025-34	9.5	66
121	Aspirin-triggered lipoxin A4 inhibits atherosclerosis progression in apolipoprotein E mice. <i>British Journal of Pharmacology</i> , 2017 , 174, 4043-4054	8.6	65
120	From Focal Lipid Storage to Systemic Inflammation: JACC Review Topic of the Week. <i>Journal of the American College of Cardiology</i> , 2019 , 74, 1594-1607	15.1	65
119	MHC Class II-restricted antigen presentation by plasmacytoid dendritic cells drives proatherogenic T cell immunity. <i>Circulation</i> , 2014 , 130, 1363-73	16.7	64
118	Expression of interleukin-15 in mouse and human atherosclerotic lesions. <i>American Journal of Pathology</i> , 2001 , 159, 417-23	5.8	62
117	Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential. <i>Cellular and Molecular Life Sciences</i> , 2016 , 73, 901-22	10.3	61
116	Toll to be paid at the gateway to the vessel wall. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2005 , 25, 1085-7	9.4	60
115	Pyrrolidine dithiocarbamate-induced apoptosis depends on cell type, density, and the presence of Cu(2+) and Zn(2+). <i>American Journal of Physiology - Cell Physiology</i> , 2000 , 278, C1116-25	5.4	60
114	Human arterial smooth muscle cells in culture: inverse relationship between proliferation and expression of contractile proteins. <i>In Vitro Cellular & Developmental Biology</i> , 1989 , 25, 511-20		60

(2010-2011)

113	12- and 15-lipoxygenases in human carotid atherosclerotic lesions: associations with cerebrovascular symptoms. <i>Atherosclerosis</i> , 2011 , 215, 411-6	3.1	59
112	Sphingosine-1-phosphate analogue FTY720 causes lymphocyte redistribution and hypercholesterolemia in ApoE-deficient mice. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2007 , 27, 2392-9	9.4	56
111	Immunology of ischemic vascular disease: plaque to attack. <i>Trends in Immunology</i> , 2005 , 26, 550-6	14.4	56
110	Regulation of Immune Mechanisms in Atherosclerosis. <i>Annals of the New York Academy of Sciences</i> , 2006 , 947, 157-166	6.5	53
109	Inhibition of indoleamine 2,3-dioxygenase promotes vascular inflammation and increases atherosclerosis in Apoe-/- mice. <i>Cardiovascular Research</i> , 2015 , 106, 295-302	9.9	52
108	Vaccination against atherosclerosis? Induction of atheroprotective immunity. <i>Seminars in Immunopathology</i> , 2009 , 31, 95-101	12	50
107	Immune mechanisms in atherogenesis. <i>Annals of Medicine</i> , 1994 , 26, 141-6	1.5	49
106	Osteoprotegerin promotes fibrous cap formation in atherosclerotic lesions of ApoE-deficient micebrief report. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2009 , 29, 1478-80	9.4	47
105	Dendritic cells pulsed with malondialdehyde modified low density lipoprotein aggravate atherosclerosis in Apoe(-/-) mice. <i>Atherosclerosis</i> , 2010 , 209, 436-41	3.1	46
104	cDNA cloning and expression of inducible nitric oxide synthase from rat vascular smooth muscle cells. <i>Biochimica Et Biophysica Acta Gene Regulatory Mechanisms</i> , 1994 , 1218, 421-4		46
103	Plasma protein accumulation in injured endothelial cells. Immunofluorescent localization of IgG and fibrinogen in the rabbit aortic endothelium. <i>Experimental and Molecular Pathology</i> , 1979 , 30, 12-26	4.4	45
102	Sterile inflammation in the spleen during atherosclerosis provides oxidation-specific epitopes that induce a protective B-cell response. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E2030-8	11.5	44
101	Subcutaneous immunization with heat shock protein-65 reduces atherosclerosis in Apoe?/? mice. <i>Immunobiology</i> , 2012 , 217, 540-7	3.4	44
100	IKKbeta-dependent NF-kappaB pathway controls vascular inflammation and intimal hyperplasia. <i>FASEB Journal</i> , 2005 , 19, 1293-5	0.9	43
99	Scavenger receptors mediate adhesion of activated B lymphocytes. <i>Experimental Cell Research</i> , 1998 , 239, 16-22	4.2	42
98	Fc-dependent binding of monocytes to areas with endothelial injury in the rabbit aorta. <i>Experimental and Molecular Pathology</i> , 1981 , 34, 264-80	4.4	42
97	Phenotypic Modulation of Smooth Muscle Cells in Atherosclerosis Is Associated With Downregulation of LMOD1, SYNPO2, PDLIM7, PLN, and SYNM. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2016 , 36, 1947-61	9.4	42
96	Short-term delivery of anti-PlGF antibody delays progression of atherosclerotic plaques to vulnerable lesions. <i>Cardiovascular Research</i> , 2010 , 86, 29-36	9.9	41

95	Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver. <i>Circulation Research</i> , 2017 , 120, 1740-1753	15.7	40
94	Induction of CD36 by all-trans retinoic acid: retinoic acid receptor signaling in the pathogenesis of atherosclerosis. <i>FASEB Journal</i> , 2001 , 15, 1221-3	0.9	40
93	Retinoic acid inhibits nitric oxide synthase-2 expression through the retinoic acid receptor-alpha. <i>Biochemical and Biophysical Research Communications</i> , 2000 , 270, 846-51	3.4	40
92	T-cell activation leads to reduced collagen maturation in atherosclerotic plaques of Apoe(-/-) mice. <i>American Journal of Pathology</i> , 2009 , 174, 693-700	5.8	39
91	Induction of Neonatal Tolerance to Oxidized Lipoprotein Reduces Atherosclerosis In ApoE Knockout Mice. <i>Molecular Medicine</i> , 2000 , 6, 283-290	6.2	38
90	Omega-3 fatty acids, cardiovascular risk, and the resolution of inflammation. <i>FASEB Journal</i> , 2019 , 33, 1536-1539	0.9	37
89	Hypercholesterolemia Enhances T Cell Receptor Signaling and Increases the Regulatory T Cell Population. <i>Scientific Reports</i> , 2017 , 7, 15655	4.9	37
88	T cell-mediated inflammation in adipose tissue does not cause insulin resistance in hyperlipidemic mice. <i>Circulation Research</i> , 2009 , 104, 961-8	15.7	37
87	Identification of a danger-associated peptide from apolipoprotein B100 (ApoBDS-1) that triggers innate proatherogenic responses. <i>Circulation</i> , 2011 , 124, 2433-43, 1-7	16.7	36
86	Identification of the BCAR1-CFDP1-TMEM170A locus as a determinant of carotid intima-media thickness and coronary artery disease risk. <i>Circulation: Cardiovascular Genetics</i> , 2012 , 5, 656-65		35
85	Thromboxane synthase expression and thromboxane A2 production in the atherosclerotic lesion. Journal of Molecular Medicine, 2010 , 88, 795-806	5.5	35
84	Effect of sex and age on serum biochemical reference ranges in C57BL/6J mice. <i>Comparative Medicine</i> , 2004 , 54, 176-8	1.6	35
83	Interferon-Released by Activated CD8 T Lymphocytes Impairs the Calcium Resorption Potential of Osteoclasts in Calcified Human Aortic Valves. <i>American Journal of Pathology</i> , 2017 , 187, 1413-1425	5.8	34
82	Rip2 deficiency leads to increased atherosclerosis despite decreased inflammation. <i>Circulation Research</i> , 2011 , 109, 1210-8	15.7	33
81	Immune mechanisms in atherosclerosis. <i>Coronary Artery Disease</i> , 1994 , 5, 216-22	1.4	33
80	Low-Density Lipoprotein-Reactive T Cells Regulate Plasma Cholesterol Levels and Development of Atherosclerosis in Humanized Hypercholesterolemic Mice. <i>Circulation</i> , 2018 , 138, 2513-2526	16.7	32
79	NOD2-mediated innate immune signaling regulates the eicosanoids in atherosclerosis. <i>Arteriosclerosis, Thrombosis, and Vascular Biology,</i> 2013 , 33, 2193-201	9.4	31
78	The contribution of inducible nitric oxide and cytomegalovirus to the stability of complex carotid plaque. <i>Journal of Vascular Surgery</i> , 1999 , 30, 36-49; discussion 50	3.5	31

77	Innate immune receptor NOD2 promotes vascular inflammation and formation of lipid-rich necrotic cores in hypercholesterolemic mice. <i>European Journal of Immunology</i> , 2014 , 44, 3081-92	6.1	30
76	Hypercholesterolemia leads to elevated TGF-beta1 activity and T helper 3-dependent autoimmune responses in atherosclerotic mice. <i>Atherosclerosis</i> , 2009 , 204, 381-7	3.1	30
75	Cyclosporine A inhibits induction of DNA synthesis by PDGF and other peptide mitogens in cultured rat aortic smooth muscle cells and dermal fibroblasts. <i>Growth Factors</i> , 1991 , 4, 209-19	1.6	30
74	IgG binding to cytoskeletal intermediate filaments activates the complement cascade. <i>Experimental Cell Research</i> , 1987 , 170, 338-50	4.2	30
73	Augmented Th17 differentiation in Trim21 deficiency promotes a stable phenotype of atherosclerotic plaques with high collagen content. <i>Cardiovascular Research</i> , 2018 , 114, 158-167	9.9	29
72	Germinal Center-Derived Antibodies Promote Atherosclerosis Plaque Size and Stability. <i>Circulation</i> , 2019 , 139, 2466-2482	16.7	28
71	Alternative Splicing of Controls Regulatory T Cell Effector Functions and Is Associated With Human Atherosclerotic Plaque Stability. <i>Circulation Research</i> , 2018 , 122, 1385-1394	15.7	28
70	Valvular osteoclasts in calcification and aortic valve stenosis severity. <i>International Journal of Cardiology</i> , 2013 , 168, 2264-71	3.2	28
69	Accumulation of IgG and complement factor C3 in human arterial endothelium and atherosclerotic lesions. <i>Acta Pathologica, Microbiologica, Et Immunologica Scandinavica Section A, Pathology</i> , 1984 , 92, 429-35		28
68	Acute Loss of Apolipoprotein E Triggers an Autoimmune Response That Accelerates Atherosclerosis. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2018 , 38, e145-e158	9.4	27
67	Novel Multiomics Profiling of Human Carotid Atherosclerotic Plaques and Plasma Reveals Biliverdin Reductase B as Marker of Intraplaque Hemorrhage. <i>JACC Basic To Translational Science</i> , 2018 , 3, 464-4	80 7	27
66	Prevention of radiotherapy-induced arterial inflammation by interleukin-1 blockade. <i>European Heart Journal</i> , 2019 , 40, 2495-2503	9.5	26
65	Modulation of autoimmunity and atherosclerosis - common targets and promising translational approaches against disease. <i>Circulation Journal</i> , 2015 , 79, 924-33	2.9	26
64	The role of adaptive immunity in atherosclerosis. <i>Annals of the New York Academy of Sciences</i> , 2000 , 902, 53-62; discussion 62-4	6.5	26
63	Inflammatory interaction between LIGHT and proteinase-activated receptor-2 in endothelial cells: potential role in atherogenesis. <i>Circulation Research</i> , 2009 , 104, 60-8	15.7	24
62	I Nicotinic acetylcholine receptor is expressed in human atherosclerosis and inhibits disease in micebrief report. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2014 , 34, 2632-6	9.4	23
61	CARD8 gene encoding a protein of innate immunity is expressed in human atherosclerosis and associated with markers of inflammation. <i>Clinical Science</i> , 2013 , 125, 401-7	6.5	23
60	Increased levels of the homeostatic chemokine CXCL13 in human atherosclerosis - Potential role in plaque stabilization. <i>Atherosclerosis</i> , 2012 , 224, 266-73	3.1	22

59	Pulling down the plug on atherosclerosis: cooling down the inflammasome. <i>Nature Medicine</i> , 2011 , 17, 790-1	50.5	21
58	Cysteinyl leukotriene signaling aggravates myocardial hypoxia in experimental atherosclerotic heart disease. <i>PLoS ONE</i> , 2012 , 7, e41786	3.7	21
57	Low TLR7 gene expression in atherosclerotic plaques is associated with major adverse cardio- and cerebrovascular events. <i>Cardiovascular Research</i> , 2017 , 113, 30-39	9.9	20
56	Lack of invariant natural killer T cells affects lipid metabolism in adipose tissue of diet-induced obese mice. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2013 , 33, 1189-96	9.4	20
55	Enhanced phenylephrine-induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of KCa channels: relation to Kv channels and nitric oxide. <i>British Journal of Pharmacology</i> , 1999 , 128, 637-46	8.6	20
54	T cell-based therapies for atherosclerosis. <i>Current Pharmaceutical Design</i> , 2013 , 19, 5850-8	3.3	20
53	Vaccination Strategies and Immune Modulation of Atherosclerosis. Circulation Research, 2020, 126, 12	81 <u>1</u> 1 3 290	6 18
52	The atheroprotective effect of 17beta-estradiol depends on complex interactions in adaptive immunity. <i>American Journal of Pathology</i> , 2005 , 167, 267-74	5.8	18
51	Activation-induced FOXP3 isoform profile in peripheral CD4+ T cells is associated with coronary artery disease. <i>Atherosclerosis</i> , 2017 , 267, 27-33	3.1	17
50	Gene expression of inflammatory mediators in different chambers of the human heart. <i>Annals of Thoracic Surgery</i> , 2000 , 70, 562-7	2.7	17
49	Deficiency of the T cell regulator Casitas B-cell lymphoma-B aggravates atherosclerosis by inducing CD8+ T cell-mediated macrophage death. <i>European Heart Journal</i> , 2019 , 40, 372-382	9.5	17
48	Activation of the Regulatory T-Cell/Indoleamine 2,3-Dioxygenase Axis Reduces Vascular Inflammation and Atherosclerosis in Hyperlipidemic Mice. <i>Frontiers in Immunology</i> , 2018 , 9, 950	8.4	16
47	Hydrogen peroxide induces mRNA for tumour necrosis factor alpha in human endothelial cells. <i>Free Radical Research</i> , 1999 , 31, 503-12	4	16
46	Toll-Like Receptor 3 Influences Glucose Homeostasis and Ecell Insulin Secretion. <i>Diabetes</i> , 2015 , 64, 3425-38	0.9	15
45	Immunomodulation and vaccination for atherosclerosis. <i>Expert Opinion on Biological Therapy</i> , 2004 , 4, 599-612	5.4	15
44	Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice. <i>Scientific Reports</i> , 2016 , 6, 28337	4.9	15
43	Atherosclerosis Susceptibility in Mice Is Independent of the V1 Immunoglobulin Heavy Chain Gene. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2016 , 36, 25-36	9.4	14
42	The B cell: a good guy in vascular disease?. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2002 , 22, 523-4	9.4	14

41	Cellular and immunologic features of carotid artery disease in man and experimental animal models. <i>European Journal of Vascular Surgery</i> , 1990 , 4, 49-55		14
40	Inflammasome-Driven Interleukin-1[and]Interleukin-1[Production in Atherosclerotic Plaques Relates to Hyperlipidemia and Plaque Complexity. <i>JACC Basic To Translational Science</i> , 2019 , 4, 304-317	8.7	13
39	Medicine. Tackling two diseases with HDL. <i>Science</i> , 2010 , 328, 1641-2	33.3	13
38	PCSK6 Is a Key Protease in the Control of Smooth Muscle Cell Function in Vascular Remodeling. <i>Circulation Research</i> , 2020 , 126, 571-585	15.7	12
37	3-Hydroxyanthralinic acid metabolism controls the hepatic SREBP/lipoprotein axis, inhibits inflammasome activation in macrophages, and decreases atherosclerosis in Ldlr-/- mice. <i>Cardiovascular Research</i> , 2020 , 116, 1948-1957	9.9	12
36	Testosterone Protects Against Atherosclerosis in Male Mice by Targeting Thymic Epithelial Cells-Brief Report. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2018 , 38, 1519-1527	9.4	12
35	miR-29b Mediates the Chronic[Inflammatory Response in Radiotherapy-Induced Vascular Disease. JACC Basic To Translational Science, 2019 , 4, 72-82	8.7	11
34	The inflammatory cytokine interferon-gamma inhibits sortilin-1 expression in hepatocytes via the JAK/STAT pathway. <i>European Journal of Immunology</i> , 2017 , 47, 1918-1924	6.1	11
33	Endothelin-1 increases expression and activity of arginase 2 via ETB receptors and is co-expressed with arginase 2 in human atherosclerotic plaques. <i>Atherosclerosis</i> , 2020 , 292, 215-223	3.1	10
32	Gene deletion of NF-kappaB p105 enhances neointima formation in a mouse model of carotid artery injury. <i>Cardiovascular Drugs and Therapy</i> , 2006 , 20, 103-11	3.9	9
31	Deficiency of nitric oxide synthase 2 results in increased neointima formation in a mouse model of vascular injury. <i>Journal of Cardiovascular Pharmacology</i> , 2003 , 41, 897-902	3.1	9
30	Reduced frequency of memory CD8+ T lymphocytes in cerebrospinal fluid and blood of patients with multiple sclerosis. <i>Autoimmunity</i> , 1995 , 21, 231-9	3	9
29	Developing a vaccine against atherosclerosis. <i>Nature Reviews Cardiology</i> , 2020 , 17, 451-452	14.8	8
28	Human genetic evidence for involvement of CD137 in atherosclerosis. <i>Molecular Medicine</i> , 2014 , 20, 456	5 -6 5	8
27	Thrombin inhibitor reduces myocardial infarction in apoE-/- x LDLR-/- mice. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2004 , 287, H872-7	5.2	8
26	Apolipoprotein B100 danger-associated signal 1 (ApoBDS-1) triggers platelet activation and boosts platelet-leukocyte proinflammatory responses. <i>Thrombosis and Haemostasis</i> , 2014 , 112, 332-41	7	7
25	Medicine. LIGHT hits the liver. <i>Science</i> , 2007 , 316, 206-7	33.3	7
24	TGF-beta in atherosclerosis. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2004 , 24, E137; author reply E137-8	9.4	7

23	Fatty acid binding protein 4 in circulating leucocytes reflects atherosclerotic lesion progression in Apoe(-/-) mice. <i>Journal of Cellular and Molecular Medicine</i> , 2013 , 17, 303-10	5.6	6
22	Endothelial dysfunction and injury in atherosclerosis. <i>Acta Medica Scandinavica</i> , 1987 , 715, 11-7		6
21	The resolvin D1 receptor GPR32 transduces inflammation-resolution and atheroprotection. <i>Journal of Clinical Investigation</i> , 2021 ,	15.9	6
20	Increased Carotid Artery Lesion Inflammation Upon Treatment With the CD137 Agonistic Antibody 2A. <i>Circulation Journal</i> , 2017 , 81, 1945-1952	2.9	5
19	Toll in the vessel wallfor better or worse?. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 2637-8	11.5	5
18	Vaccination and atherosclerosis. Current Atherosclerosis Reports, 2004, 6, 158-64	6	5
17	Adaptive immunity in acute coronary syndromes: chicken or egg?. European Heart Journal, 2018, 39, 10	9&;\$09	94
16	Epidemiology complements immunology in the heart. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2006 , 26, 2178-80	9.4	4
15	Atherosclerosis, Thrombosis, and Vascular Biology 2012 , 409-412		4
14	Activation of VPAC1 receptors aggravates early atherosclerosis in hypercholesterolemic apolipoprotein E-deficient mice. <i>Biochemical and Biophysical Research Communications</i> , 2010 , 402, 471-	6 ^{3.4}	3
13	How to chew up cells: lessons for the atherosclerotic plaque. Circulation Research, 2012, 111, 669-71	15.7	3
12	A journey in science: medical scientist in translation. <i>Molecular Medicine</i> , 2014 , 20, 381-9	6.2	2
11	Re: The binding of immunoglobulins to cytoskeletal intermediate filaments. <i>Journal of Immunological Methods</i> , 1985 , 82, 185	2.5	2
10	Molecular Cell Biology of Atherosclerosis 2014 , 1-17		2
9	Detrimental and protective roles of adaptive immunity in atherosclerosis. <i>International Congress Series</i> , 2004 , 1262, 59-62		1
8	Solid-phase preparation of vimentin-type intermediate filaments for immunoassays. <i>Journal of Immunological Methods</i> , 1985 , 85, 401-7	2.5	1
7	The heart of immunology: immune mechanisms in cardiovascular medicine. <i>Cardiovascular Research</i> , 2021 , 117, e166-e168	9.9	1
6	Plaque Evaluation by Ultrasound and Transcriptomics Reveals BCLAF1 as a Regulator of Smooth Muscle Cell Lipid Transdifferentiation in Atherosclerosis <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2022 , ATVBAHA121317018	9.4	1

LIST OF PUBLICATIONS

- Clinical risk scores for stroke correlate with molecular signatures of vulnerability in symptomatic carotid patients.. *IScience*, **2022**, 25, 104219
- 6.1 0

- 4 Molecular Biology of Atherosclerosis **2015**, 121-135
- 3 Immunity to Low-Density Lipoprotein **2012**, 423-434
- ENDOTHELIAL STRUCTURE IN RABBITS WITH MODERATE HYPERCHOLESTEROLAEMI. Acta Pathologica Et Microbiologica Scandinavica Section A, Pathology, **2009**, 85A, 671-682
- Autoimmune Aspects of Atherosclerosis **2001**, 17-26