Christopher Bone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11234935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combining Area-Based and Individual Tree Metrics for Improving Merchantable and Non-Merchantable Wood Volume Estimates in Coastal Douglas-Fir Forests. Remote Sensing, 2022, 14, 2204.	4.0	3
2	Use of Multi-Temporal LiDAR to Quantify Fertilization Effects on Stand Volume and Biomass in Late-Rotation Coastal Douglas-Fir Forests. Forests, 2021, 12, 517.	2.1	3
3	Local-level emergence of network governance within the U.S. Forest Service: A case study of mountain pine beetle outbreak from Colorado, USA. Forest Policy and Economics, 2020, 118, 102204.	3.4	4
4	An Initial Look at Contracted Wildfire Response Capacity in the American West. Journal of Forestry, 2019, 117, 1-8.	1.0	7
5	Documents as data: A content analysis and topic modeling approach for analyzing responses to ecological disturbances. Ecological Informatics, 2019, 51, 82-95.	5.2	18
6	Cyclic epidemics, population crashes, and irregular eruptions in simulated populations of the mountain pine beetle, Dendroctonus ponderosae. Ecological Complexity, 2018, 36, 218-229.	2.9	3
7	Sharing contracted resources for fire suppression: engine dispatch in the Northwestern United States. International Journal of Wildland Fire, 2017, 26, 113.	2.4	12
8	Adaptation to a landscape-scale mountain pine beetle epidemic in the era of networked governance: the enduring importance of bureaucratic institutions. Ecology and Society, 2017, 22, .	2.3	35
9	Employing resilience in the United States Forest Service. Land Use Policy, 2016, 52, 430-438.	5.6	31
10	Modeling micro-scale ecological processes and emergent patterns of mountain pine beetle epidemics. Ecological Modelling, 2014, 289, 45-58.	2.5	15
11	A GIS-based risk rating of forest insect outbreaks using aerial overview surveys and the local Moran's I statistic. Applied Geography, 2013, 40, 161-170.	3.7	55
12	Impact of Forest Fragmentation on Patterns of Mountain Pine Beetle-Caused Tree Mortality. Forests, 2013, 4, 279-295.	2.1	21
13	Applying content analysis for investigating the reporting of water issues. Computers, Environment and Urban Systems, 2012, 36, 599-613.	7.1	17
14	Alaska's Freshwater Resources: Issues Affecting Local and International Interests1. Journal of the American Water Resources Association, 2011, 47, 143-157.	2.4	9
15	Simulation and validation of a reinforcement learning agent-based model for multi-stakeholder forest management. Computers, Environment and Urban Systems, 2010, 34, 162-174.	7.1	38
16	Influence of statistical methods and reference dates on describing temperature change in Alaska. Journal of Geophysical Research, 2010, 115, .	3.3	7
17	Incorporating spatio-temporal knowledge in an Intelligent Agent Model for natural resource management. Landscape and Urban Planning, 2010, 96, 123-133.	7.5	11
18	Evaluating Spatio-temporal Complexities of Forest Management: An Integrated Agent-based Modeling and GIS Approach. Environmental Modeling and Assessment, 2009, 14, 481-496.	2.2	14

#	Article	IF	CITATIONS
19	Evaluating forest management practices using a GIS-based cellular automata modeling approach with multispectral imagery. Environmental Modeling and Assessment, 2007, 12, 105-118.	2.2	16
20	A fuzzy-constrained cellular automata model of forest insect infestations. Ecological Modelling, 2006, 192, 107-125.	2.5	72