Kyotaro Noguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11233462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiological characteristics of pure cultures of a white-colored truffle <i>Tuber japonicum</i> . Mycoscience, 2022, 63, 53-57.	0.8	1
2	Soil hardness regulates the root penetration by trees planted on anthropogenic growing bases in coastal forests in Japan: new endeavors to reforest the coastal disaster prevention forests with high resilience for tsunami. Journal of Soils and Sediments, 2021, 21, 2035-2048.	3.0	2
3	Spatial variations in the growth rate of Hylocomium splendens and the thickness of the organic layer on a north-facing slope in Interior Alaska. Polar Science, 2021, 29, 100654.	1.2	2
4	Soil carbon stock changes due to afforestation in Japan by the paired sampling method on an equivalent mass basis. Biogeochemistry, 2021, 153, 263-281.	3.5	2
5	Different Waterlogging Depths Affect Spatial Distribution of Fine Root Growth for Pinus thunbergii Seedlings. Frontiers in Plant Science, 2021, 12, 614764.	3.6	12
6	Fine Root Growth of Black Spruce Trees and Understory Plants in a Permafrost Forest Along a North-Facing Slope in Interior Alaska. Frontiers in Plant Science, 2021, 12, 769710.	3.6	4
7	Plant trait database for <i>Cryptomeria japonica</i> and <i>Chamaecyparis obtusa</i> (SugiHinoki DB): Their physiology, morphology, anatomy and biochemistry. Ecological Research, 2020, 35, 274-275.	1.5	15
8	Influence of pH on inÂvitro mycelial growth in three Japanese truffle species: Tuber japonicum, T. himalayense, and T. longispinosum. Mycoscience, 2020, 61, 58-61.	0.8	10
9	Assessing changes in soil carbon stocks after land use conversion from forest land to agricultural land in Japan. Geoderma, 2020, 377, 114487.	5.1	30
10	Root Responses of Five Japanese Afforestation Species to Waterlogging. Forests, 2020, 11, 552.	2.1	9
11	Biomass and Production Rates of Fine Roots in Two Mangrove Stands in Southern Thailand. Japan Agricultural Research Quarterly, 2020, 54, 349-360.	0.4	6
12	Spatiotemporal variations of below-ground monoterpene concentrations in an upland black spruce stand in interior Alaska. Polar Science, 2019, 21, 158-164.	1.2	5
13	Effects of row deep tillage for the growth base formed by piling up soil in damp lowlands behind coastal sand dunes to construct coastal disaster prevention forest belts on the Kujukuri coastline, Japan. Soil Science and Plant Nutrition, 2018, 64, 168-180.	1.9	4
14	Calculation procedures to estimate fine root production rates in forests using two-dimensional fine root data obtained by the net sheet method. Tree Physiology, 2017, 37, 697-705.	3.1	1
15	Estimation of fine root biomass using a minirhizotron technique among three vegetation types in a cool-temperate brackish marsh. Soil Science and Plant Nutrition, 2016, 62, 465-470.	1.9	2
16	Fine root biomass in two black spruce stands in interior Alaska: effects of different permafrost conditions. Trees - Structure and Function, 2016, 30, 441-449.	1.9	11
17	Editorial note for the special issue "Dynamics and physiological processes of tree rootsâ€. Trees - Structure and Function, 2016, 30, 337-341.	1.9	0
18	Applicability of the net sheet method for estimating fine root production in forest ecosystems. Trees - Structure and Function. 2016. 30. 571-578.	1.9	7

#	Article	IF	CITATIONS
19	CO ₂ , CH ₄ and N ₂ O fluxes of upland black spruce (<i>Picea) Tj ETQq1 Plant Nutrition, 2015, 61, 98-105.</i>	1 0.784314 rg 1.9	gBT /Overloo 20
20	Effects of long-term exposure to ammonium sulfate particles on growth and gas exchange rates of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica seedlings. Atmospheric Environment, 2014, 97, 493-500.	4.1	11
21	Replacing Norway spruce with European beech: A comparison of biomass and net primary production patterns in young stands. Forest Ecology and Management, 2013, 302, 185-192.	3.2	20
22	Fine-root dynamics in sugi (Cryptomeria japonica) under manipulated soil nitrogen conditions. Plant and Soil, 2013, 364, 159-169.	3.7	29
23	Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after 3 years of nitrogen fertilization. Frontiers in Plant Science, 2013, 4, 347.	3.6	40
24	High belowground biomass allocation in an upland black spruce (Picea mariana) stand in interior Alaska. Polar Science, 2012, 6, 133-141.	1.2	11
25	Effects of Long-term Exposure to Black Carbon Particles on Growth and Gas Exchange Rates of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica Seedlings. Asian Journal of Atmospheric Environment, 2012, 6, 259-267.	1.1	11
26	Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management, 2011, 261, 265-277.	3.2	194
27	Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. Forest Ecology and Management, 2011, 262, 2008-2023.	3.2	242
28	Fine-root dynamics in a young hinoki cypress (<i>Chamaecyparis obtusa</i>) stand for 3 years following thinning. Journal of Forest Research, 2011, 16, 284-291.	1.4	26
29	Changes in soil organic carbon and nitrogen in an area of Andisol following afforestation with Japanese cedar and Hinoki cypress. Soil Science and Plant Nutrition, 2010, 56, 332-343.	1.9	10
30	A new method for placing and lifting root meshes for estimating fine root production in forest ecosystems. Plant Root, 2009, 3, 26-31.	0.3	26
31	Classification of rhizosphere components using visible–near infrared spectral images. Plant and Soil, 2008, 310, 245-261.	3.7	30
32	Effects of simulated drought stress on the fine roots of Japanese cedar (Cryptomeria japonica) in a plantation forest on the Kanto Plain, eastern Japan. Journal of Forest Research, 2007, 12, 143-151.	1.4	41
33	Biomass and production of fine roots in Japanese forests. Journal of Forest Research, 2007, 12, 83-95.	1.4	69
34	Special feature: development and function of roots of forest trees in Japan. Journal of Forest Research, 2007, 12, 75-77.	1.4	0
35	Fine root dynamics in a Japanese cedar (Cryptomeria japonica) plantation throughout the growing season. Forest Ecology and Management, 2006, 225, 278-286.	3.2	62

 $_{36}$ Estimating the production and mortality of fine roots in a Japanese cedar (Cryptomeria japonica D.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 rgA /Overlock

KYOTARO NOGUCHI

#	Article	IF	CITATIONS
37	Isolation and characterization of a novelArabidopsis thatianamutant that requires a high concentration of boron. Soil Science and Plant Nutrition, 2004, 50, 1183-1185.	1.9	0
38	Estimation of the fine root biomass in a Japanese cedar (Cryptomeria japonica) plantation using minirhizotrons. Journal of Forest Research, 2004, 9, 261-264.	1.4	15
39	Biochemical properties of the cell wall in the Arabidopsis mutant bor1-1 in relation to boron nutrition. Journal of Plant Nutrition and Soil Science, 2003, 166, 175-178.	1.9	30
40	Arabidopsis boron transporter for xylem loading. Nature, 2002, 420, 337-340.	27.8	582
41	Arabidopsis thaliana Mutant bor1-1 is Defective in Boron Translocation. , 2002, , 281-288.		1
42	Preferential translocation of boron to young leaves in <i>Arabidopsis thaliana</i> Regulated by the <i>BOR1</i> Gene. Soil Science and Plant Nutrition, 2001, 47, 345-357.	1.9	87
43	Defect in Root-Shoot Translocation of Boron in Arabidopsis thaliana Mutant bor 1-1. Journal of Plant Physiology, 2000, 156, 751-755.	3.5	48
44	Isolation and Physiological Analysis of a Novel Arabidopsis Thaliana Mutant That Requires a High Level of Boron. , 1999, , 269-275.		4
45	Genetic and physiological approaches toward understanding the mechanisms underlying the sulfur-regulated expression of β-conglycinin genes. Soil Science and Plant Nutrition, 1997, 43, 965-969.	1.9	4
46	Absorption and distribution of boron in Arabidopsis thaliana. , 1997, , 197-201.		2