
Kyotaro Noguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11233462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arabidopsis boron transporter for xylem loading. Nature, 2002, 420, 337-340.	27.8	582
2	Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. Forest Ecology and Management, 2011, 262, 2008-2023.	3.2	242
3	Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management, 2011, 261, 265-277.	3.2	194
4	Preferential translocation of boron to young leaves in <i>Arabidopsis thaliana</i> Regulated by the <i>BOR1</i> Gene. Soil Science and Plant Nutrition, 2001, 47, 345-357.	1.9	87
5	Biomass and production of fine roots in Japanese forests. Journal of Forest Research, 2007, 12, 83-95.	1.4	69
6	Fine root dynamics in a Japanese cedar (Cryptomeria japonica) plantation throughout the growing season. Forest Ecology and Management, 2006, 225, 278-286.	3.2	62
7	Defect in Root-Shoot Translocation of Boron in Arabidopsis thaliana Mutant bor 1-1. Journal of Plant Physiology, 2000, 156, 751-755.	3.5	48
8	Effects of simulated drought stress on the fine roots of Japanese cedar (Cryptomeria japonica) in a plantation forest on the Kanto Plain, eastern Japan. Journal of Forest Research, 2007, 12, 143-151.	1.4	41
9	Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after 3 years of nitrogen fertilization. Frontiers in Plant Science, 2013, 4, 347.	3.6	40
10	Estimating the production and mortality of fine roots in a Japanese cedar (Cryptomeria japonica D.) Tj ETQq0 0 0	rgBT /Ove 1.4	rlock 10 Tf 5
11	Biochemical properties of the cell wall in the Arabidopsis mutant bor1-1 in relation to boron nutrition. Journal of Plant Nutrition and Soil Science, 2003, 166, 175-178.	1.9	30
12	Classification of rhizosphere components using visible–near infrared spectral images. Plant and Soil, 2008, 310, 245-261.	3.7	30
13	Assessing changes in soil carbon stocks after land use conversion from forest land to agricultural land in Japan. Geoderma, 2020, 377, 114487.	5.1	30
14	Fine-root dynamics in sugi (Cryptomeria japonica) under manipulated soil nitrogen conditions. Plant and Soil, 2013, 364, 159-169.	3.7	29
15	Fine-root dynamics in a young hinoki cypress (<i>Chamaecyparis obtusa</i>) stand for 3 years following thinning. Journal of Forest Research, 2011, 16, 284-291.	1.4	26
16	A new method for placing and lifting root meshes for estimating fine root production in forest ecosystems. Plant Root, 2009, 3, 26-31.	0.3	26
17	Replacing Norway spruce with European beech: A comparison of biomass and net primary production patterns in young stands. Forest Ecology and Management, 2013, 302, 185-192.	3.2	20

CO₂, CH₄and N₂O fluxes of upland black spruce (<i>Picea) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 1.9 20 Plant Nutrition, 2015, 61, 98-105.

Kyotaro Noguchi

#	Article	IF	CITATIONS
19	Estimation of the fine root biomass in a Japanese cedar (Cryptomeria japonica) plantation using minirhizotrons. Journal of Forest Research, 2004, 9, 261-264.	1.4	15
20	Plant trait database for <i>Cryptomeria japonica</i> and <i>Chamaecyparis obtusa</i> (SugiHinoki DB): Their physiology, morphology, anatomy and biochemistry. Ecological Research, 2020, 35, 274-275.	1.5	15
21	Different Waterlogging Depths Affect Spatial Distribution of Fine Root Growth for Pinus thunbergii Seedlings. Frontiers in Plant Science, 2021, 12, 614764.	3.6	12
22	High belowground biomass allocation in an upland black spruce (Picea mariana) stand in interior Alaska. Polar Science, 2012, 6, 133-141.	1.2	11
23	Effects of long-term exposure to ammonium sulfate particles on growth and gas exchange rates of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica seedlings. Atmospheric Environment, 2014, 97, 493-500.	4.1	11
24	Fine root biomass in two black spruce stands in interior Alaska: effects of different permafrost conditions. Trees - Structure and Function, 2016, 30, 441-449.	1.9	11
25	Effects of Long-term Exposure to Black Carbon Particles on Growth and Gas Exchange Rates of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica Seedlings. Asian Journal of Atmospheric Environment, 2012, 6, 259-267.	1.1	11
26	Changes in soil organic carbon and nitrogen in an area of Andisol following afforestation with Japanese cedar and Hinoki cypress. Soil Science and Plant Nutrition, 2010, 56, 332-343.	1.9	10
27	Influence of pH on inÂvitro mycelial growth in three Japanese truffle species: Tuber japonicum, T. himalayense, and T. longispinosum. Mycoscience, 2020, 61, 58-61.	0.8	10
28	Root Responses of Five Japanese Afforestation Species to Waterlogging. Forests, 2020, 11, 552.	2.1	9
29	Applicability of the net sheet method for estimating fine root production in forest ecosystems. Trees - Structure and Function, 2016, 30, 571-578.	1.9	7
30	Biomass and Production Rates of Fine Roots in Two Mangrove Stands in Southern Thailand. Japan Agricultural Research Quarterly, 2020, 54, 349-360.	0.4	6
31	Spatiotemporal variations of below-ground monoterpene concentrations in an upland black spruce stand in interior Alaska. Polar Science, 2019, 21, 158-164.	1.2	5
32	Genetic and physiological approaches toward understanding the mechanisms underlying the sulfur-regulated expression of β-conglycinin genes. Soil Science and Plant Nutrition, 1997, 43, 965-969.	1.9	4
33	Effects of row deep tillage for the growth base formed by piling up soil in damp lowlands behind coastal sand dunes to construct coastal disaster prevention forest belts on the Kujukuri coastline, Japan. Soil Science and Plant Nutrition, 2018, 64, 168-180.	1.9	4
34	Isolation and Physiological Analysis of a Novel Arabidopsis Thaliana Mutant That Requires a High Level of Boron. , 1999, , 269-275.		4
35	Fine Root Growth of Black Spruce Trees and Understory Plants in a Permafrost Forest Along a North-Facing Slope in Interior Alaska. Frontiers in Plant Science, 2021, 12, 769710.	3.6	4
36	Estimation of fine root biomass using a minirhizotron technique among three vegetation types in a cool-temperate brackish marsh. Soil Science and Plant Nutrition, 2016, 62, 465-470.	1.9	2

KYOTARO NOGUCHI

#	Article	IF	CITATIONS
37	Soil hardness regulates the root penetration by trees planted on anthropogenic growing bases in coastal forests in Japan: new endeavors to reforest the coastal disaster prevention forests with high resilience for tsunami. Journal of Soils and Sediments, 2021, 21, 2035-2048.	3.0	2
38	Spatial variations in the growth rate of Hylocomium splendens and the thickness of the organic layer on a north-facing slope in Interior Alaska. Polar Science, 2021, 29, 100654.	1.2	2
39	Soil carbon stock changes due to afforestation in Japan by the paired sampling method on an equivalent mass basis. Biogeochemistry, 2021, 153, 263-281.	3.5	2
40	Absorption and distribution of boron in Arabidopsis thaliana. , 1997, , 197-201.		2
41	Calculation procedures to estimate fine root production rates in forests using two-dimensional fine root data obtained by the net sheet method. Tree Physiology, 2017, 37, 697-705.	3.1	1
42	Arabidopsis thaliana Mutant bor1-1 is Defective in Boron Translocation. , 2002, , 281-288.		1
43	Physiological characteristics of pure cultures of a white-colored truffle <i>Tuber japonicum</i> . Mycoscience, 2022, 63, 53-57.	0.8	1
44	Isolation and characterization of a novelArabidopsis thatianamutant that requires a high concentration of boron. Soil Science and Plant Nutrition, 2004, 50, 1183-1185.	1.9	0
45	Special feature: development and function of roots of forest trees in Japan. Journal of Forest Research, 2007, 12, 75-77.	1.4	0
46	Editorial note for the special issue "Dynamics and physiological processes of tree roots― Trees - Structure and Function, 2016, 30, 337-341.	1.9	0