Pingnian He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1123336/publications.pdf

Version: 2024-02-01

65	1,530	25	38
papers	citations	h-index	g-index
65	65	65	1859
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 761-766.	7.1	177
2	Dominant role of cAMP in regulation of microvessel permeability. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1124-H1133.	3.2	82
3	Leucocyte/endothelium interactions and microvessel permeability: coupled or uncoupled?. Cardiovascular Research, 2010, 87, 281-290.	3.8	76
4	Selective knockout of astrocytic Na ⁺ /H ⁺ exchanger isoform 1 reduces astrogliosis, BBB damage, infarction, and improves neurological function after ischemic stroke. Glia, 2018, 66, 126-144.	4.9	74
5	Activation of endothelial Wnt \hat{l}^2 -catenin signaling by protective astrocytes repairs BBB damage in ischemic stroke. Progress in Neurobiology, 2021, 199, 101963.	5.7	64
6	Gut-resident CX3CR1 ^{hi} macrophages induce tertiary lymphoid structures and IgA response in situ. Science Immunology, 2020, 5, .	11.9	63
7	Endothelial cell hyperpolarization increases [Ca2+]i and venular microvessel permeability. Journal of Applied Physiology, 1994, 76, 2288-2297.	2.5	56
8	Tumor necrosis factor-î±-induced leukocyte adhesion and microvessel permeability. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2420-H2430.	3.2	51
9	Platelet-activating factor increases endothelial [Ca2+]i and NO production in individually perfused intact microvessels. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2869-H2877.	3.2	46
10	Insulin decreases atherosclerosis by inducing endothelin receptor B expression. JCI Insight, 2016, 1, .	5.0	46
11	cGMP modulates basal and activated microvessel permeability independently of [Ca2+]i. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H1865-H1874.	3.2	44
12	Measurement of Membrane Potential of Endothelial Cells in Single Perfused Microvessels. Microvascular Research, 1995, 50, 183-198.	2.5	39
13	Ca2+ entry through conductive pathway modulates receptor-mediated increase in microvessel permeability. American Journal of Physiology - Heart and Circulatory Physiology, 1996, 271, H2377-H2387.	3.2	39
14	fMLP-stimulated neutrophils increase endothelial [Ca2+]i and microvessel permeability in the absence of adhesion: role of reactive oxygen species. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1331-H1338.	3.2	39
15	Oxidative Stress and Microvessel Barrier Dysfunction. Frontiers in Physiology, 2020, 11, 472.	2.8	39
16	Sphingosine-1-phosphate prevents permeability increases via activation of endothelial sphingosine-1-phosphate receptor 1 in rat venules. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1494-H1504.	3.2	38
17	Effect of nitric oxide synthase inhibitors on endothelial [Ca2+]i and microvessel permeability. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 272, H176-H185.	3.2	37
18	Improved measurements of intracellular nitric oxide in intact microvessels using 4,5-diaminofluorescein diacetate. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H108-H114.	3.2	37

#	Article	IF	CITATIONS
19	Leukocyte-platelet aggregate adhesion and vascular permeability in intact microvessels: role of activated endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H591-H599.	3.2	36
20	Endothelial [Ca2+]i and caveolin-1 antagonistically regulate eNOS activity and microvessel permeability in rat venules. Cardiovascular Research, 2010, 87, 340-347.	3.8	36
21	fMLP-stimulated release of reactive oxygen species from adherent leukocytes increases microvessel permeability. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H365-H372.	3.2	34
22	Reduction of Endothelial Nitric Oxide Increases the Adhesiveness of Constitutive Endothelial Membrane ICAM-1 through Src-Mediated Phosphorylation. Frontiers in Physiology, 2017, 8, 1124.	2.8	34
23	Leukocyte adhesion and microvessel permeability. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1686-H1694.	3.2	33
24	Internalization of caveolin-1 scaffolding domain facilitated by Antennapedia homeodomain attenuates PAF-induced increase in microvessel permeability. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H195-H201.	3.2	31
25	Caveolin-1 scaffolding domain promotes leukocyte adhesion by reduced basal endothelial nitric oxide-mediated ICAM-1 phosphorylation in rat mesenteric venules. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1484-H1493.	3.2	29
26	Sphingosine 1-phosphate prevents platelet-activating factor-induced increase in hydraulic conductivity in rat mesenteric venules: pertussis toxin sensitive. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H840-H844.	3.2	21
27	In Vitro Recapitulation of Functional Microvessels for the Study of Endothelial Shear Response, Nitric Oxide and [Ca2+]i. PLoS ONE, 2015, 10, e0126797.	2.5	21
28	Three-dimensional localization and quantification of PAF-induced gap formation in intact venular microvessels. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H898-H906.	3.2	20
29	Vascular remodeling alters adhesion protein and cytoskeleton reactions to inflammatory stimuli resulting in enhanced permeability increases in rat venules. Journal of Applied Physiology, 2012, 113, 1110-1120.	2.5	20
30	Effect of nitric oxide synthase inhibitors on basal microvessel permeability and endothelial cell [Ca2+]i. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H747-H755.	3.2	19
31	H ₂ O ₂ -induced endothelial NO production contributes to vascular cell apoptosis and increased permeability in rat venules. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H82-H93.	3.2	19
32	New insights into shear stress-induced endothelial signalling and barrier function: cell-free fluid versus blood flow. Cardiovascular Research, 2017, 113, 508-518.	3.8	18
33	Temporal and spatial correlation of platelet-activating factor-induced increases in endothelial [Ca ²⁺] _i , nitric oxide, and gap formation in intact venules. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1788-H1797.	3.2	17
34	Enhanced permeability responses to inflammation in streptozotocin-induced diabetic rat venules: Rho-mediated alterations of actin cytoskeleton and VE-cadherin. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H44-H53.	3.2	15
35	Calcium influx-dependent differential actions of superoxide and hydrogen peroxide on microvessel permeability. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1096-H1107.	3.2	14
36	Visualization of Endothelial Clefts and Nuclei in Living Microvessels with Combined Reflectance and Fluorescence Confocal Microscopy. Microcirculation, 1995, 2, 267-276.	1.8	13

#	Article	IF	CITATIONS
37	Increased circulating microparticles in streptozotocinâ€induced diabetes propagate inflammation contributing to microvascular dysfunction. Journal of Physiology, 2019, 597, 781-798.	2.9	9
38	Transendothelial movement of adiponectin is restricted by glucocorticoids. Journal of Endocrinology, 2017, 234, 101-114.	2.6	8
39	H2O2â€induced microvessel barrier dysfunction: the interplay between reactive oxygen species, nitric oxide, and peroxynitrite. Physiological Reports, 2019, 7, .	1.7	7
40	Leveraging avidin-biotin interaction to quantify permeability property of microvessels-on-a-chip networks. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H71-H86.	3.2	6
41	The acquisition of a kindled response in developing rats using 24-h intertrial intervals. Developmental Brain Research, 1986, 24, 291-294.	1.7	5
42	Beyond tie-ing up endothelial adhesion: new insights into the action of angiopoietin-1 in regulation of microvessel permeability. Cardiovascular Research, 2009, 83, 1-2.	3.8	5
43	Spent Culture Medium from Virulent Borrelia burgdorferi Increases Permeability of Individually Perfused Microvessels of Rat Mesentery. PLoS ONE, 2008, 3, e4101.	2.5	5
44	Development and Characterization of $In Vitro Microvessel Network and Quantitative Measurements of Endothelial [Ca2+]iand Nitric Oxide Production. Journal of Visualized Experiments, 2016, , .$	0.3	4
45	Activating Sphingosine-1-phospahte signaling in endothelial cells increases myosin light chain phosphorylation to decrease endothelial permeability thereby inhibiting cancer metastasis. Cancer Letters, 2021, 506, 107-119.	7.2	4
46	Red Blood Cell Released ATP Regulates Systemic Immune Response in Atherosclerosis. FASEB Journal, 2021, 35, .	0.5	0
47	Exercise Alleviates Atherosclerosis Progression through Regulation of Inflammatory Cytokines. FASEB Journal, 2021, 35, .	0.5	0
48	Endothelial [Ca2+]i and caveolinâ€1 play antagonistic roles in the regulation of NO production and microvessel permeability. FASEB Journal, 2007, 21, A489.	0.5	0
49	Sphingosine 1â€phosphate (S1P) prevents platelet activating factor (PAF)â€induced vascular leakage through its inhibitory action on endothelial gap formation. FASEB Journal, 2007, 21, A489.	0.5	0
50	Differential actions of Sphingosineâ€1 Phosphate (S1P) receptors in the regulation of microvessel permeability in rat mesenteric venules. FASEB Journal, 2009, 23, 950.10.	0.5	0
51	Cellular Mechanisms of Hydrogen Peroxide (H 2 O 2)â€induced Permeability Increases in Intact Venules: Role of H 2 O 2 â€induced Ca 2+ â€independent Nitric Oxide (NO) Production in Endothelial Cells. FASEB Journal, 2010, 24, 975.1.	0.5	0
52	Sphingosine 1â€Phosphate (S1P) Prevents Platelet Activating Factor (PAF)―Induced Permeability Increases by Activation of Racâ€1 Signaling in Intact Venules. FASEB Journal, 2010, 24, 975.2.	0.5	0
53	Cellular and molecular mechanisms of Hydrogen Peroxide (H 2 O 2)â€induced cell Injury and Barrier Dysfunction in Intact Venules. FASEB Journal, 2010, 24, 785.3.	0.5	0
54	Enhanced Acute Responses to Inflammatory Stimuli at Early Stage of Microvessel Remodeling. FASEB Journal, 2010, 24, 975.11.	0.5	0

#	Article	IF	CITATIONS
55	Shear Stress Generated by Different Fluid Compositions Induces Differential Endothelial Signaling in Intact Venules. FASEB Journal, 2012, 26, 859.4.	0.5	0
56	Increased nitric oxide is necessary but not sufficient to increase permeability in the absence of calcium influx in intact rat venules. FASEB Journal, 2012, 26, 855.2.	0.5	0
57	Increased Circulating Microparticles in Diabetic Rats Mediate Leukocyte Adhesion in Intact Venules. FASEB Journal, 2012, 26, 855.1.	0.5	0
58	Rhoâ€dependent upregulation of endothelial contractility and adhesion disassembly contributes to the enhanced permeability responses to inflammation in diabetic venules. FASEB Journal, 2012, 26, 855.8.	0.5	0
59	The impaired glycocalyx increases the endothelial susceptibility to shear stress resulting in augmented nitric oxide production in microvessels of diabetic rats. FASEB Journal, 2013, 27, 902.8.	0.5	0
60	Increased Circulating Microparticles in Diabetic Rats are not only a Result of Cell Activation but Actively Serve as Mediators of Inflammatory Signaling. FASEB Journal, 2013, 27, 684.8.	0.5	0
61	Time course of changes in microvessel permeability in streptozotocin (STZ)â€induced diabetic rats. FASEB Journal, 2013, 27, 896.11.	0.5	0
62	Assessing Endothelial Cell Permeability and Transport Pathways via Biotin/FITCâ€Avidin Interaction in Cultured Endothelial Microchannel Networks Using Microfluidic Devices. FASEB Journal, 2018, 32, 706.9.	0.5	0
63	Nrf2 Deficiency Exacerbates Oxidative Stress and Microvessel Susceptibility to Inflammation in Diabetic Rats. FASEB Journal, 2018, 32, 706.8.	0.5	0
64	The Interplay between Hyperresistinemia, Elevated ROS, and Hyperglycemia in Diabetic Rats and Their Roles in Diabetesâ€Associated Neutrophil Dysfunction. FASEB Journal, 2018, 32, 706.11.	0.5	0
65	Role of Red Blood Cell Released ATP in Disturbed Blood Flowâ€Initiated Vascular Inflammation and Atherosclerosis. FASEB Journal, 2019, 33, 521.3.	0.5	0