George F Vande Woude

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11233113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Met, metastasis, motility and more. Nature Reviews Molecular Cell Biology, 2003, 4, 915-925.	37.0	2,399
2	Proteolytic Inactivation of MAP-Kinase-Kinase by Anthrax Lethal Factor. Science, 1998, 280, 734-737.	12.6	992
3	Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature, 1984, 311, 29-33.	27.8	923
4	The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature, 1989, 342, 512-518.	27.8	669
5	Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature, 1988, 335, 519-525.	27.8	638
6	Mechanism of met oncogene activation. Cell, 1986, 45, 895-904.	28.9	523
7	Novel Therapeutic Inhibitors of the c-Met Signaling Pathway in Cancer. Clinical Cancer Research, 2009, 15, 2207-2214.	7.0	484
8	Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene, 2000, 19, 5582-5589.	5.9	382
9	Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12718-12723.	7.1	321
10	Inactivation of Lrg-47 and Irg-47 Reveals a Family of Interferon γ–Inducible Genes with Essential, Pathogen-Specific Roles in Resistance to Infection. Journal of Experimental Medicine, 2001, 194, 181-188.	8.5	311
11	A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene, 2000, 19, 4947-4953.	5.9	308
12	The human met oncogene is related to the tyrosine kinase oncogenes. Nature, 1985, 318, 385-388.	27.8	302
13	Specific proteolysis of the c-mos proto-oncogene product by calpain on fertilization of Xenopus eggs. Nature, 1989, 342, 505-511.	27.8	295
14	HGF/SFâ€met signaling in the control of branching morphogenesis and invasion. Journal of Cellular Biochemistry, 2003, 88, 408-417.	2.6	279
15	Meiotic initiation by the mos protein in Xenopus. Nature, 1992, 355, 649-652.	27.8	252
16	Hepatocyte growth factor/scatter factor—Met signaling in tumorigenicity and invasion/metastasis. Journal of Molecular Medicine, 1996, 74, 505-513.	3.9	249
17	c-Met Overexpression Is a Prognostic Factor in Ovarian Cancer and an Effective Target for Inhibition of Peritoneal Dissemination and Invasion. Cancer Research, 2007, 67, 1670-1679.	0.9	239
18	C-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. International Journal of Cancer, 2005, 113, 678-682.	5.1	227

#	Article	IF	CITATIONS
19	Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2987-96.	7.1	206
20	The von Hippel-Lindau Tumor Suppressor Gene Inhibits Hepatocyte Growth Factor/Scatter Factor-Induced Invasion and Branching Morphogenesis in Renal Carcinoma Cells. Molecular and Cellular Biology, 1999, 19, 5902-5912.	2.3	194
21	Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4046-4051.	7.1	193
22	Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene, 2002, 21, 217-226.	5.9	171
23	Expression of c-mos proto-oncogene transcripts in mouse tissues. Nature, 1985, 315, 516-518.	27.8	169
24	Proliferation and invasion: Plasticity in tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10528-10533.	7.1	163
25	HGF/SF-Met signaling in tumor progression. Cell Research, 2005, 15, 49-51.	12.0	160
26	Down-regulation of MET, the receptor for hepatocyte growth factor. Oncogene, 2001, 20, 2761-2770.	5.9	159
27	High expression of the Met receptor in prostate cancer metastasis to bone. Urology, 2002, 60, 1113-1117.	1.0	157
28	Potential Role of Mitogen-Activated Protein Kinase during Meiosis Resumption in Bovine Oocytes1. Biology of Reproduction, 1996, 55, 1261-1270.	2.7	149
29	Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3052-3057.	7.1	139
30	Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8995-9000.	7.1	129
31	Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene, 2004, 23, 5193-5202.	5.9	119
32	Hepatocyte growth factor (HGF) autocrine activation predicts sensitivity to MET inhibition in glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 570-575.	7.1	113
33	Identification of a Novel GTPase, the Inducibly Expressed GTPase, That Accumulates in Response to Interferon Î ³ . Journal of Biological Chemistry, 1996, 271, 20399-20405.	3.4	110
34	Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma. Cancer Research, 2002, 62, 589-96.	0.9	108
35	Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12909-12914.	7.1	105
36	MET: A Critical Player in Tumorigenesis and Therapeutic Target. Cold Spring Harbor Perspectives in Biology, 2013, 5, a009209-a009209.	5.5	105

#	Article	IF	CITATIONS
37	RNA Interference Reveals that Ligand-Independent Met Activity Is Required for Tumor Cell Signaling and Survival. Cancer Research, 2004, 64, 7962-7970.	0.9	102
38	Proto-oncogene expression in germ cell development. Trends in Genetics, 1988, 4, 183-187.	6.7	95
39	Targeted disruption of Mig-6 in the mouse genome leads to early onset degenerative joint disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11740-11745.	7.1	90
40	Mig-6, Signal Transduction, Stress Response and Cancer. Cell Cycle, 2007, 6, 507-513.	2.6	90
41	Normal and Malignant Prostate Epithelial Cells Differ in Their Response to Hepatocyte Growth Factor/Scatter Factor. American Journal of Pathology, 2001, 159, 579-590.	3.8	86
42	<i>Mig-6</i> modulates uterine steroid hormone responsiveness and exhibits altered expression in endometrial disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8677-8682.	7.1	82
43	Activation Mechanisms of the Urokinase-type Plasminogen Activator Promoter by Hepatocyte Growth Factor/Scatter Factor. Journal of Biological Chemistry, 1999, 274, 16377-16386.	3.4	80
44	The Inducibly Expressed GTPase Localizes to the Endoplasmic Reticulum, Independently of GTP Binding. Journal of Biological Chemistry, 1997, 272, 10639-10645.	3.4	79
45	Genes that regulate metastasis and angiogenesis. Journal of Neuro-Oncology, 2000, 50, 71-87.	2.9	79
46	MET Kinase Inhibitor SGX523 Synergizes with Epidermal Growth Factor Receptor Inhibitor Erlotinib in a Hepatocyte Growth Factor–Dependent Fashion to Suppress Carcinoma Growth. Cancer Research, 2010, 70, 6880-6890.	0.9	77
47	Sodium dodecylsulfate-dependent anomalies in gel electrophoresis: Alterations in the banding patterns of foot-and-mouth disease virus polypeptides. Analytical Biochemistry, 1974, 58, 337-346.	2.4	72
48	Enhanced growth of human met-expressing xenografts in a new strain of immunocompromised mice transgenic for human hepatocyte growth factor/scatter factor. Oncogene, 2005, 24, 101-106.	5.9	72
49	Hepatocyte growth factor–stimulated invasiveness of monocytes. Blood, 2000, 95, 3964-3969.	1.4	63
50	Chromosome instability drives phenotypic switching to metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14793-14798.	7.1	63
51	Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion/metastasis. Journal of Molecular Medicine, 1996, 74, 505-513.	3.9	62
52	Mos and the cell cycle: the molecular basis of the transformed phenotype. Current Opinion in Genetics and Development, 1993, 3, 19-25.	3.3	60
53	Biomarkers, Surrogate End Points, and the Acceleration of Drug Development for Cancer Prevention and Treatment. Clinical Cancer Research, 2004, 10, 3881-3884.	7.0	58
54	A highly invasive human glioblastoma pre-clinical model for testing therapeutics. Journal of Translational Medicine, 2008, 6, 77.	4.4	52

#	Article	IF	CITATIONS
55	Dominant negative Met reduces tumorigenicity-metastasis and increases tubule formation in mammary cells. Oncogene, 2000, 19, 2386-2397.	5.9	51
56	Geldanamycins exquisitely inhibit HGF/SF-mediated tumor cell invasion. Oncogene, 2005, 24, 3697-3707.	5.9	50
57	Cartilage-specific deletion of Mig-6 results in osteoarthritis-like disorder with excessive articular chondrocyte proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2590-2595.	7.1	49
58	Cells transformed by certain strains of moloney sarcoma virus contain murine p60. Cell, 1977, 10, 79-89.	28.9	48
59	Isolation of the structural polypeptides of foot-and-mouth disease virus and analysis of their C-terminal sequences. Virology, 1973, 52, 520-528.	2.4	45
60	MEK Wars, a new front in the battle against cancer. Nature Medicine, 1999, 5, 736-737.	30.7	44
61	An alternatively spliced form of Met receptor is tumorigenic. Experimental and Molecular Medicine, 2006, 38, 565-573.	7.7	41
62	Identification of a Met-Binding Peptide from a Phage Display Library. Clinical Cancer Research, 2007, 13, 6049-6055.	7.0	40
63	Therapeutic potential of hepatocyte growth factor/scatter factor neutralizing antibodies: Inhibition of tumor growth in both autocrine and paracrine hepatocyte growth factor/scatter factor:c-Met-driven models of leiomyosarcoma. Molecular Cancer Therapeutics, 2009, 8, 2803-2810.	4.1	40
64	Signaling requirements for oncogenic forms of the Met tyrosine kinase receptor. Oncogene, 1998, 17, 2691-2700.	5.9	39
65	Regulation of P311 Expression by Met-Hepatocyte Growth Factor/Scatter Factor and the Ubiquitin/Proteasome System. Journal of Biological Chemistry, 2000, 275, 4215-4219.	3.4	38
66	Overexpression of HGF Promotes HBV-Induced Hepatocellular Carcinoma Progression and Is an Effective Indicator for Met-Targeting Therapy. Genes and Cancer, 2013, 4, 247-260.	1.9	35
67	MET and ERBB2 Are Coexpressed in ERBB2+ Breast Cancer and Contribute to Innate Resistance. Molecular Cancer Research, 2013, 11, 1112-1121.	3.4	33
68	Three additional DNA polymorphisms in the met gene and D7S8 locus: Use in prenatal diagnosis of cystic fibrosis. Journal of Pediatrics, 1987, 111, 490-495.	1.8	31
69	Hepatocyte growth factor–stimulated invasiveness of monocytes. Blood, 2000, 95, 3964-3969.	1.4	29
70	Chemical and physical properties of foot-and-mouth disease virus: A comparison with maus elberfeld virus. Biochemical and Biophysical Research Communications, 1972, 48, 1222-1229.	2.1	28
71	Strengthening Context-Dependent Anticancer Effects on Non–Small Cell Lung Carcinoma by Inhibition of Both MET and EGFR. Molecular Cancer Therapeutics, 2013, 12, 1429-1441.	4.1	28
72	Regulation of migration of primary prostate epithelial cells by secreted factors from prostate stromal cells. Experimental Cell Research, 2003, 288, 246-256.	2.6	26

#	Article	IF	CITATIONS
73	Reanalysis of Cancer Drugs. Clinical Cancer Research, 2004, 10, 3897-3907.	7.0	26
74	Met decoys. Cancer Cell, 2004, 6, 5-6.	16.8	26
75	A Mouse Model of Activating Met Mutations. Cell Cycle, 2005, 4, 518-520.	2.6	25
76	Chromosomal localization of the met proto-oncogene in the mouse and cat genome. Genomics, 1987, 1, 167-173.	2.9	24
77	Activating mutations in the Met receptor overcome the requirement for autophosphorylation of tyrosines crucial for wild type signaling. Oncogene, 1999, 18, 5120-5125.	5.9	23
78	Simultaneous Targeting of Two Distinct Epitopes on MET Effectively Inhibits MET- and HGF-Driven Tumor Growth by Multiple Mechanisms. Molecular Cancer Therapeutics, 2017, 16, 2780-2791.	4.1	23
79	Radioimmunoscintigraphy of Tumors Autocrine for Human Met and Hepatocyte Growth Factor/Scatter Factor. Molecular Imaging, 2002, 1, 56-62.	1.4	21
80	Nuclear Imaging of Met-Expressing Human and Canine Cancer Xenografts with Radiolabeled Monoclonal Antibodies (MetSeekTM). Clinical Cancer Research, 2005, 11, 7064s-7069s.	7.0	20
81	In Vivo Direct Molecular Imaging of Early Tumorigenesis and Malignant Progression Induced by Transgenic Expression of GFP-Met. Neoplasia, 2006, 8, 353-363.	5.3	20
82	Benzoquinone ansamycin 17AAG binds to mitochondrial voltage-dependent anion channel and inhibits cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4105-4110.	7.1	20
83	Genomic profiling of a Hepatocyte growth factor-dependent signature for MET-targeted therapy in glioblastoma. Journal of Translational Medicine, 2015, 13, 306.	4.4	18
84	Number and Molecular Weights of Foot-and-Mouth Disease Virus Capsid Proteins and the Effects of Maleylation. Journal of Virology, 1971, 7, 250-259.	3.4	18
85	Anthrax Fusion Protein Therapy of Cancer. Current Protein and Peptide Science, 2002, 3, 399-407.	1.4	17
86	Cancer-Type Regulation of MIG-6 Expression by Inhibitors of Methylation and Histone Deacetylation. PLoS ONE, 2012, 7, e38955.	2.5	17
87	Decreased fibronectin expression in Met/HGF-mediated tumorigenesis. Oncogene, 1998, 17, 1179-1183.	5.9	16
88	The Mos proto-oncogene maps near the centromere on mouse chromosome 4. Genomics, 1989, 5, 118-123.	2.9	15
89	Differential responses of MET activations to MET kinase inhibitor and neutralizing antibody. Journal of Translational Medicine, 2018, 16, 253.	4.4	15
90	Mechanisms of Xenopus oocyte maturation. Methods in Enzymology, 1997, 283, 584-600.	1.0	13

#	Article	IF	CITATIONS
91	On the loss of Mos. Nature, 1994, 370, 20-21.	27.8	11
92	Germline Met Mutations in Mice Reveal Mutation- and Background-Associated Differences in Tumor Profiles. PLoS ONE, 2010, 5, e13586.	2.5	11
93	Correlation between Physiological and Transforming Activities of thec-mosProto-oncogene Product and Identification of an Essential Mos Domain for These Activities. Japanese Journal of Cancer Research, 1991, 82, 250-253.	1.7	10
94	HGF/SF Increases Tumor Blood Volume: A Novel Tool for the In Vivo Functional Molecular Imaging of Met. Neoplasia, 2006, 8, 344-352.	5.3	10
95	Cooperative Effect of Oncogenic <i>MET</i> and <i>PIK3CA</i> in an HGF-Dominant Environment in Breast Cancer. Molecular Cancer Therapeutics, 2019, 18, 399-412.	4.1	9
96	An arresting activity. Nature, 2002, 416, 804-805.	27.8	8
97	<i>Met</i> amplification and tumor progression in <i>Cdkn2a</i> â€deficient melanocytes. Pigment Cell and Melanoma Research, 2009, 22, 454-460.	3.3	8
98	<scp>MET</scp> 4 expression predicts poor prognosis of gastric cancers with <i>Helicobacter pylori</i> infection. Cancer Science, 2017, 108, 322-330.	3.9	7
99	[29] Microinjection into Xenopus oocytes. Methods in Enzymology, 1995, 254, 458-466.	1.0	6
100	RTK inhibition: looking for the right pathways toward a miracle. Future Oncology, 2012, 8, 1397-1400.	2.4	6
101	The distinct stage-specific effects of 2-(p-amylcinnamoyl)amino-4-chlorobenzoic acid on the activation of MAP kinase and Cdc2 kinase in Xenopus oocyte maturation. Cellular Signalling, 2005, 17, 507-523.	3.6	5
102	Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes*. Biology of the Cell, 1998, 90, 461-466.	2.0	4
103	Radioimmunoscintigraphy of Tumors Autocrine for Human Met and Hepatocyte Growth Factor/Scatter Factor. Molecular Imaging, 2002, 1, 153535002002000.	1.4	4
104	<i>Mos</i> Protoâ€Oncogene Function. Novartis Foundation Symposium, 1990, 150, 147-167.	1.1	4
105	Met Activation and Carcinogenesis. Current Human Cell Research and Applications, 2018, , 129-154.	0.1	3
106	The MET Receptor Family. , 2015, , 321-358.		2
107	Genes involved in oncogenesis. Advances in Veterinary Medicine, 1997, 40, 51-102.	0.6	1
108	MIC-6 and SPRY2 in the Regulation of Receptor Tyrosine Kinase Signaling: Balancing Act via Negative Feedback Loops. , 0, , .		1

#	Article	IF	CITATIONS
109	Cloning Retroviruses: Retrovirus Cloning?. , 1981, , 89-107.		1
110	MET., 2011,, 2251-2254.		0
111	MET. , 2014, , 1-6.		0
112	MET. , 2014, , 2761-2765.		0
113	mos Proto-Oncogene Product and Cytostatic Factor. , 1991, , 112-128.		0
114	Mos. , 1995, , 358-360.		0
115	Mos, Meiosis and Cellular Transformation. , 1996, , 59-71.		0