
Jerry M Farley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11233072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of first and second generation antihistamines on muscarinic induced mucus gland cell ion transport. BMC Pharmacology, 2005, 5, 8.	0.4	48
2	Allopregnanolone Reinstates Tyrosine Hydroxylase Immunoreactive Neurons and Motor Performance in an MPTP-Lesioned Mouse Model of Parkinson's Disease. PLoS ONE, 2012, 7, e50040.	2.5	44
3	Allopregnanolone Increases the Number of Dopaminergic Neurons in Substantia Nigra of a Triple Transgenic Mouse Model of Alzheimer's Disease. Current Alzheimer Research, 2012, 9, 473-480.	1.4	41
4	Extracellular acidosis activates ASIC-like channels in freshly isolated cerebral artery smooth muscle cells. American Journal of Physiology - Cell Physiology, 2010, 298, C1198-C1208.	4.6	36
5	Cardiac toxicity of some echinocandin antifungals. Expert Opinion on Drug Safety, 2014, 13, 5-14.	2.4	28
6	Antimuscarinic actions of antihistamines on the heart. Journal of Biomedical Science, 2006, 13, 395-401.	7.0	26
7	Human neutrophil elastase releases two pools of mucinlike glycoconjugate from tracheal submucosal gland cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L675-L682.	2.9	16
8	ASIC-like Currents in Freshly Isolated Cerebral Artery Smooth Muscle Cells are Inhibited by Endogenous Oxidase Activity. Cellular Physiology and Biochemistry, 2011, 27, 129-138.	1.6	14
9	Activation of phospholipase D in porcine tracheal smooth muscle: role of phosphatidylinositol 3-kinase and RhoA activation. European Journal of Pharmacology, 2001, 433, 7-16.	3.5	9
10	Muscarinic receptors and mucus secretion in swine tracheal epithelium: Effects of subacute organophosphate treatment. Fundamental and Applied Toxicology, 1991, 17, 34-42.	1.8	8
11	Calcium mobilization and muscle contraction induced by acetylcholine in swine trachealis. Journal of Biomedical Science, 1995, 2, 272-282.	7.0	8
12	Cocaine Inhibits Chloride Secretion by Swine Tracheal Submucosal Gland Cells Grown in Culture. Toxicology and Applied Pharmacology, 1996, 139, 387-393.	2.8	7
13	Prostanoids Secreted by Alveolar Macrophages Enhance Ionic Currents in Swine Tracheal Submucosal Gland Cells. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 729-739.	2.5	7
14	Down-regulation of muscarinic receptors in the striatum of organophosphate-treated swine. Toxicology and Applied Pharmacology, 1990, 104, 375-385.	2.8	6
15	Prostaglandin E2 Enhances Acetylcholine-Induced, Ca2+-Dependent Ionic Currents in Swine Tracheal Mucous Gland Cells. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 501-513.	2.5	4
16	Autonomic stimulation of short circuit current in swine trachea. Life Sciences, 1991, 48, 873-880.	4.3	3
17	Reduction in the bioelectric properties of swine tracheal submucosal gland cells in culture after daily short-term exposure to cocaine. European Journal of Pharmacology, 1997, 334, 281-287.	3.5	3
18	Regulation of acetylcholine-induced phosphorylation of PLD1 in porcine tracheal smooth muscle. Journal of Biomedical Science, 2004, 11, 810-817.	7.0	3

JERRY M FARLEY

#	Article	IF	CITATIONS
19	Effects of elevated cytosolic calcium on ACh-induced swine tracheal smooth muscle contraction. Journal of Biomedical Science, 1996, 3, 348-358.	7.0	1
20	Lidocaine-Induced Alterations in Agonist-Induced Ion Transport of Cultured Swine Tracheal Submucosal Gland Cells. Toxicology and Applied Pharmacology, 2000, 167, 231-236.	2.8	1
21	Tachyphylaxis to the inhibitory effect of L-type channel blockers on ACh-induced [Ca2+]i oscillations in porcine tracheal myocytes. Journal of Biomedical Science, 2007, 14, 129-143.	7.0	1
22	Airway Smooth Muscle Ion Channels. Methods in Neurosciences, 1994, 19, 220-239.	0.5	1
23	Characterization of Contractile Function and Expression of Muscarinic Receptors, G Proteins and Adenylate Cyclase in Cultured Tracheal Smooth Muscle of Swine. Journal of Biomedical Science, 2002, 9, 339-347.	7.0	1
24	Regulation of Acetylcholine-Induced Phosphorylation of PLD1 in Porcine Tracheal Smooth Muscle. Journal of Biomedical Science, 2004, 11, 810-817.	7.0	1
25	Muscarinic Receptors and Mucus Secretion in Swine Tracheal Epithelium: Effects of Subacute Organophosphate Treatment. Toxicological Sciences, 1991, 17, 34-42.	3.1	0
26	PKA Enhances the Sensitivity of IP 3 Receptors in Swine Airway Submucosal Gland Cells FASEB Journal, 2009, 23, 580.4.	0.5	0
27	Extracellular acidosis activates ASICâ€like channels in freshly isolated cerebral artery smooth muscle cells. FASEB Journal, 2009, 23, 1018.13.	0.5	0
28	Transient Receptor Potential Type C Channels Play a Critical Role in Angiogenesis. FASEB Journal, 2011, 25, 1091.12.	0.5	0