
Robert Björk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1123299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vegetation responses to 26 years of warming at Latnjajaure Field Station, northern Sweden. Arctic Science, 2022, 8, 858-877.	2.3	13
2	The tundra phenology database: more than two decades of tundra phenology responses to climate change. Arctic Science, 2022, 8, 1026-1039.	2.3	7
3	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
4	Patterns of free amino acids in tundra soils reflect mycorrhizal type, shrubification, and warming. Mycorrhiza, 2022, 32, 305-313.	2.8	2
5	Reduced methane emissions in former permafrost soils driven by vegetation and microbial changes following drainage. Global Change Biology, 2022, 28, 3411-3425.	9.5	6
6	Limited decadal growth of mountain birch saplings has minor impact on surrounding tundra vegetation. Ecology and Evolution, 2022, 12, .	1.9	2
7	Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis. Journal of Experimental Botany, 2021, 72, 459-475.	4.8	28
8	Dynamics of Fungal and Bacterial Biomass Carbon in Natural Ecosystems: Siteâ€Level Applications of the CLMâ€Microbe Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002283.	3.8	11
9	Decreased soil moisture due to warming drives phylogenetic diversity and community transitions in the tundra. Environmental Research Letters, 2021, 16, 064031.	5.2	10
10	Patterns and drivers of cryptogam and vascular plant diversity in glacier forelands. Science of the Total Environment, 2021, 770, 144793.	8.0	9
11	Location of studies and evidence of effects of herbivory on Arctic vegetation: a systematic map. Environmental Evidence, 2021, 10, .	2.7	10
12	Nitrogen restricts future sub-arctic treeline advance in an individual-based dynamic vegetation model. Biogeosciences, 2021, 18, 6329-6347.	3.3	6
13	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	12.8	52
14	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	9.5	122
15	Experimental evidence of the longâ€ŧerm effects of reindeer on Arctic vegetation greenness and species richness at a larger landscape scale. Journal of Ecology, 2019, 107, 2724-2736.	4.0	24
16	Volatile emissions from thawing permafrost soils are influenced by meltwater drainage conditions. Global Change Biology, 2019, 25, 1704-1716.	9.5	19
17	Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.	5.8	49
18	Implications of evergreen shrub expansion in the Arctic. Journal of Ecology, 2019, 107, 650-655.	4.0	66

Robert Björk

#	Article	IF	CITATIONS
19	Complex effects of mammalian grazing on extramatrical mycelial biomass in the Scandes forestâ€ŧundra ecotone. Ecology and Evolution, 2018, 8, 1019-1030.	1.9	13
20	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	5.8	57
21	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
22	Patchy field sampling biases understanding of climate change impacts across the Arctic. Nature Ecology and Evolution, 2018, 2, 1443-1448.	7.8	112
23	Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range. Journal of Ecology, 2017, 105, 1547-1561.	4.0	49
24	Contrasting impacts of reindeer grazing in two tundra grasslands. Environmental Research Letters, 2017, 12, 034018.	5.2	16
25	The impact of shrub browsing by mountain hare and reindeer in subarctic Sweden. Plant Ecology and Diversity, 2016, 9, 421-428.	2.4	7
26	The effects of foundation species on community assembly: a global study on alpine cushion plant communities. Ecology, 2015, 96, 2064-2069.	3.2	53
27	Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecology Letters, 2014, 17, 193-202.	6.4	274
28	Reduced global warming potential after wood ash application in drained Northern peatland forests. Forest Ecology and Management, 2014, 328, 159-166.	3.2	8
29	The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant and Soil, 2013, 366, 1-27.	3.7	262
30	Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant and Soil, 2013, 362, 357-372.	3.7	167
31	Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecology Letters, 2013, 16, 478-486.	6.4	151
32	Reindeer grazing has contrasting effect on species traits in Vaccinium vitis-idaea L. and Bistorta vivipara (L.) Gray. Acta Oecologica, 2013, 53, 33-37.	1.1	10
33	Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils – A review. Soil Biology and Biochemistry, 2013, 57, 1034-1047.	8.8	207
34	A fertile peatland forest does not constitute a major greenhouse gas sink. Biogeosciences, 2013, 10, 7739-7758.	3.3	45
35	Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2012, 2, 453-457.	18.8	745
36	Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 2012, 15, 164-175.	6.4	764

Robert Björk

#	Article	IF	CITATIONS
37	Effects of Climate Change on Tundra Bryophytes. , 2011, , 211-236.		9
38	Weak habitat specificity in ectomycorrhizal communities associated with Salix herbacea and Salix polaris in alpine tundra. Mycorrhiza, 2011, 21, 289-296.	2.8	33
39	Contrasting effects of wood ash application on microbial community structure, biomass and processes in drained forested peatlands. FEMS Microbiology Ecology, 2010, 73, no-no.	2.7	28
40	Reduction of greenhouse gas emissions by wood ash application to a <i>Picea abies</i> (L.) Karst. forest on a drained organic soil. European Journal of Soil Science, 2010, 61, 734-744.	3.9	51
41	A comparison of annual and seasonal carbon dioxide effluxes between sub-Arctic Sweden and High-Arctic Svalbard. Polar Research, 2010, 29, 75-84.	1.6	34
42	Winter carbon dioxide effluxes from Arctic ecosystems: An overview and comparison of methodologies. Global Biogeochemical Cycles, 2010, 24, .	4.9	51
43	Nurse plant effect of the cushion plant <i>Silene acaulis</i> (L.) Jacq. in an alpine environment in the subarctic Scandes, Sweden. Plant Ecology and Diversity, 2009, 2, 17-25.	2.4	64
44	Temporal variation in soil microbial communities in Alpine tundra. Soil Biology and Biochemistry, 2008, 40, 266-268.	8.8	79
45	Establishment of boreal forest species in alpine dwarf-shrub heath in subarctic Sweden. Plant Ecology and Diversity, 2008, 1, 67-75.	2.4	21
46	Ecology of Alpine Snowbeds and the Impact of Global Change. Arctic, Antarctic, and Alpine Research, 2007, 39, 34-43.	1.1	165
47	Longâ€ŧerm warming effects on root morphology, root mass distribution, and microbial activity in two dry tundra plant communities in northern Sweden. New Phytologist, 2007, 176, 862-873.	7.3	85
48	Linkages between N turnover and plant community structure in a tundra landscape. Plant and Soil, 2007, 294, 247-261.	3.7	79
49	Bryophyte and Lichen Diversity Under Simulated Environmental Change Compared with Observed Variation in Unmanipulated Alpine Tundra. Biodiversity and Conservation, 2006, 15, 4453-4475.	2.6	43
50	Can distribution of trees explain variation in nitrous oxide fluxes?. Scandinavian Journal of Forest Research, 2005, 20, 481-489.	1.4	13
51	Growth rings show limited evidence for ungulates' potential to suppress shrubs across the Arctic. Environmental Research Letters, 0, , .	5.2	6