Ioan Todinca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11231679/publications.pdf

Version: 2024-02-01

933447 642732 33 591 10 23 h-index citations g-index papers 37 37 37 162 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Compact Distributed Certification of Planar Graphs. Algorithmica, 2021, 83, 2215-2244.	1.3	7
2	The role of randomness in the broadcast congested clique model. Information and Computation, 2020, , 104669.	0.7	0
3	An O(n2) time algorithm for the minimal permutation completion problem. Discrete Applied Mathematics, 2019, 254, 80-95.	0.9	1
4	Beyond Classes of Graphs with "Few―Minimal Separators: FPT Results Through Potential Maximal Cliques. Algorithmica, 2019, 81, 986-1005.	1.3	5
5	On Distributed Merlin-Arthur Decision Protocols. Lecture Notes in Computer Science, 2019, , 230-245.	1.3	4
6	Algorithms Parameterized by Vertex Cover and Modular Width, Through Potential Maximal Cliques. Algorithmica, 2018, 80, 1146-1169.	1.3	12
7	The Impact of Locality on the Detection of Cycles in the Broadcast Congested Clique Model. Lecture Notes in Computer Science, 2018, , 134-145.	1.3	4
8	On Distance-d Independent Set and Other Problems in Graphs with "few―Minimal Separators. Lecture Notes in Computer Science, 2016, , 183-194.	1.3	7
9	Beyond Classes of Graphs with "Few―Minimal Separators: FPT Results Through Potential Maximal Cliques. Lecture Notes in Computer Science, 2016, , 499-512.	1.3	2
10	An $\$$ mathcal $\{O\}(n^2)$ $\$$ Time Algorithm for the Minimal Permutation Completion Problem. Lecture Notes in Computer Science, 2016, , 103-115.	1.3	1
11	Distributed Testing of Excluded Subgraphs. Lecture Notes in Computer Science, 2016, , 342-356.	1.3	12
12	Exact Algorithms for Treewidth. , 2016, , 688-690.		0
13	Large Induced Subgraphs via Triangulations and CMSO. SIAM Journal on Computing, 2015, 44, 54-87.	1.0	70
14	Allowing each node to communicate only once in a distributed system: shared whiteboard models. Distributed Computing, 2015, 28, 189-200.	0.8	8
15	Large induced subgraphs via triangulations and CMSO. , 2014, , .		4
16	Algorithms Parameterized by Vertex Cover and Modular Width, through Potential Maximal Cliques. Lecture Notes in Computer Science, 2014, , 182-193.	1.3	7
17	An <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">O</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>n/ralgorithm for the minimal interval completion problem. Theoretical Computer Science. 2013, 494, 75-85.</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>	nml:mi> </td <td>mm⁸l:mrow><</td>	mm ⁸ l:mrow><
18	Adding a Referee to an Interconnection Network: What Can(not) Be Computed in One Round., 2011,,.		20

#	Article	IF	CITATIONS
19	Exact Algorithm for the Maximum Induced Planar Subgraph Problem. Lecture Notes in Computer Science, 2011, , 287-298.	1.3	12
20	An ${\mathbb Q}_0$ -time Algorithm for the Minimal Interval Completion Problem. Lecture Notes in Computer Science, 2010, , 175-186.	1.3	1
21	Exponential time algorithms for the minimum dominating set problem on some graph classes. ACM Transactions on Algorithms, 2009, 6, 1-21.	1.0	11
22	Computing branchwidth via efficient triangulations and blocks. Discrete Applied Mathematics, 2009, 157, 2726-2736.	0.9	9
23	Constructing Brambles. Lecture Notes in Computer Science, 2009, , 223-234.	1.3	3
24	Minimal proper interval completions. Information Processing Letters, 2008, 106, 195-202.	0.6	10
25	Exact Algorithms for Treewidth and Minimum Fill-In. SIAM Journal on Computing, 2008, 38, 1058-1079.	1.0	53
26	Characterizing Minimal Interval Completions. , 2007, , 236-247.		10
27	Minimal Interval Completions. Lecture Notes in Computer Science, 2005, , 403-414.	1.3	12
28	Computing Branchwidth Via Efficient Triangulations and Blocks. Lecture Notes in Computer Science, 2005, , 374-384.	1.3	3
29	Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In. Lecture Notes in Computer Science, 2004, , 568-580.	1.3	42
30	Approximating the treewidth of AT-free graphs. Discrete Applied Mathematics, 2003, 131, 11-37.	0.9	4
31	Listing all potential maximal cliques of a graph. Theoretical Computer Science, 2002, 276, 17-32.	0.9	85
32	Treewidth and Minimum Fill-in: Grouping the Minimal Separators. SIAM Journal on Computing, 2001, 31, 212-232.	1.0	138
33	Listing All Potential Maximal Cliques of a Graph. Lecture Notes in Computer Science, 2000, , 503-515.	1.3	4