Dylan J Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1123148/publications.pdf

Version: 2024-02-01

93 papers 5,272 citations

34 h-index 91712 69 g-index

94 all docs

94 docs citations 94 times ranked 6022 citing authors

#	Article	lF	Citations
1	Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial. Spinal Cord, 2022, 60, 522-532.	0.9	16
2	Transcranial magnetic stimulation to assess motor neurophysiology after acute stroke in the United States: Feasibility, lessons learned, and values for future research. Brain Stimulation, 2022, 15, 179-181.	0.7	6
3	High Definition tDCS Effect on Postural Control in Healthy Individuals: Entropy Analysis of a Crossover Clinical Trial. Applied Sciences (Switzerland), 2022, 12, 2703.	1.3	1
4	Differential Effects of Speech and Language Therapy and rTMS in Chronic Versus Subacute Post-stroke Aphasia: Results of the NORTHSTAR-CA Trial. Neurorehabilitation and Neural Repair, 2022, 36, 306-316.	1.4	11
5	Transcranial Random Noise Stimulation Modulates Neural Processing of Sensory and Motor Circuits, from Potential Cellular Mechanisms to Behavior: A Scoping Review. ENeuro, 2022, 9, ENEURO.0248-21.2021.	0.9	16
6	Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neuroscience and Biobehavioral Reviews, 2022, 138, 104702.	2.9	21
7	Middle cerebral artery blood flow stability in response to high-definition transcranial electrical stimulation: A randomized sham-controlled clinical trial. Clinical Neurology and Neurosurgery, 2022, 220, 107345.	0.6	1
8	Training in the practice of noninvasive brain stimulation: Recommendations from an IFCN committee. Clinical Neurophysiology, 2021, 132, 819-837.	0.7	38
9	Critically appraised paper: Non-invasive brain stimulation does not enhance the effect of robotic-assisted upper limb training on arm motor recovery after stroke [commentary]. Journal of Physiotherapy, 2021, 67, 218.	0.7	O
10	Robotic Kinematic measures of the arm in chronic Stroke: part 1 \hat{a} \in " Motor Recovery patterns from tDCS preceding intensive training. Bioelectronic Medicine, 2021, 7, 20.	1.0	5
11	Robotic Kinematic measures of the arm in chronic Stroke: part 2 – strong correlation with clinical outcome measures. Bioelectronic Medicine, 2021, 7, 21.	1.0	5
12	Dynamic time series smoothing for symbolic interval data applied to neuroscience. Information Sciences, 2020, 517, 415-426.	4.0	5
13	BrainWave Nets: Are Sparse Dynamic Models Susceptible to Brain Manipulation Experimentation?. Frontiers in Systems Neuroscience, 2020, 14, 527757.	1.2	2
14	Effects of innovative hip-knee-ankle interlimb coordinated robot training on ambulation, cardiopulmonary function, depression, and fall confidence in acute hemiplegia. NeuroRehabilitation, 2020, 46, 577-587.	0.5	20
15	Machine Learning Methods Predict Individual Upper-Limb Motor Impairment Following Therapy in Chronic Stroke. Neurorehabilitation and Neural Repair, 2020, 34, 428-439.	1.4	43
16	Non-invasive brain stimulation as add-on therapy for subacute post-stroke aphasia: a randomized trial (NORTHSTAR). European Stroke Journal, 2020, 5, 402-413.	2.7	15
17	Dose and staffing comparison study of upper limb device-assisted therapy. NeuroRehabilitation, 2020, 46, 287-297.	0.5	7
18	Non-invasive Brain Stimulation in Human Stroke Survivors. , 2020, , 501-535.		1

#	Article	IF	Citations
19	Fractional Anisotropy of Thalamic Nuclei Is Associated With Verticality Misperception After Extra-Thalamic Stroke. Frontiers in Neurology, 2019, 10, 697.	1.1	9
20	Transcranial electrical stimulation nomenclature. Brain Stimulation, 2019, 12, 1349-1366.	0.7	84
21	NeuroMeasure: A Software Package for Quantification of Cortical Motor Maps Using Frameless Stereotaxic Transcranial Magnetic Stimulation. Frontiers in Neuroinformatics, 2019, 13, 23.	1.3	2
22	Paired Associative Stimulation as a Tool to Assess Plasticity Enhancers in Chronic Stroke. Frontiers in Neuroscience, 2019, 13, 792.	1.4	11
23	Entropy Analysis of High-Definition Transcranial Electric Stimulation Effects on EEG Dynamics. Brain Sciences, 2019, 9, 208.	1.1	7
24	Efficacy of Home-Based Telerehabilitation vs In-Clinic Therapy for Adults After Stroke. JAMA Neurology, 2019, 76, 1079.	4.5	213
25	Poststroke Aphasia Rehabilitation: Why All Talk and No Action?. Neurorehabilitation and Neural Repair, 2019, 33, 235-244.	1.4	8
26	Clinical improvement with intensive robot-assisted arm training in chronic stroke is unchanged by supplementary tDCS. Restorative Neurology and Neuroscience, 2019, 37, 167-180.	0.4	38
27	Using tDCS to facilitate motor learning in speech production: The role of timing. Cortex, 2019, 111, 274-285.	1.1	31
28	Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimulation, 2018, 11, 465-480.	0.7	144
29	Manipulation of Human Verticality Using High-Definition Transcranial Direct Current Stimulation. Frontiers in Neurology, 2018, 9, 825.	1.1	17
30	Normative data for human postural vertical: A systematic review and meta-analysis. PLoS ONE, 2018, 13, e0204122.	1.1	20
31	Sinusoidal Transcranial Direct Current Versus Galvanic Vestibular Stimulation for Treatment of Lateropulsion Poststroke. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 3621-3625.	0.7	10
32	Robotic Arm Rehabilitation in Chronic Stroke Patients With Aphasia May Promote Speech and Language Recovery (but Effect Is Not Enhanced by Supplementary tDCS). Frontiers in Neurology, 2018, 9, 853.	1.1	9
33	Randomized Sham-Controlled Trial of Navigated Repetitive Transcranial Magnetic Stimulation for Motor Recovery in Stroke. Stroke, 2018, 49, 2138-2146.	1.0	113
34	A soft robotic exo-sheath using fabric EMG sensing for hand rehabilitation and assistance. , 2018, , .		20
35	Motor Enhancement with Speech Therapy Primed by rTMS: A Case Report of Oral/Pharyngeal Dystonia. Brain Stimulation, 2017, 10, e3-e4.	0.7	0
36	Transcranial Direct Current Stimulation in Poststroke Aphasia Recovery. Stroke, 2017, 48, 820-826.	1.0	25

#	Article	IF	CITATIONS
37	Improved grasp function with transcranial direct current stimulation in chronic spinal cord injury. NeuroRehabilitation, 2017, 41, 51-59.	0.5	30
38	Combined transcranial direct current stimulation and robotic upper limb therapy improves upper limb function in an adult with cerebral palsy. NeuroRehabilitation, 2017, 41, 41-50.	0.5	12
39	The corticomotor projection to liminally-contractable forearm muscles in chronic spinal cord injury: a transcranial magnetic stimulation study. Spinal Cord, 2017, 55, 362-366.	0.9	14
40	Transcranial Direct Current Stimulation and Sports Performance. Frontiers in Human Neuroscience, 2017, 11, 243.	1.0	62
41	Moving Forward by Stimulating the Brain: Transcranial Direct Current Stimulation in Post-Stroke Hemiparesis. Frontiers in Human Neuroscience, 2016, 10, 394.	1.0	20
42	Opportunities for Guided Multichannel Non-invasive Transcranial Current Stimulation in Poststroke Rehabilitation. Frontiers in Neurology, 2016, 7, 21.	1.1	38
43	Spared Primary Motor Cortex and The Presence of MEP in Cerebral Palsy Dictate the Responsiveness to tDCS during Gait Training. Frontiers in Human Neuroscience, 2016, 10, 361.	1.0	24
44	A Framework for Combining rTMS with Behavioral Therapy. Frontiers in Systems Neuroscience, 2016, 10, 82.	1.2	26
45	The sensory side of post-stroke motor rehabilitation. Restorative Neurology and Neuroscience, 2016, 34, 571-586.	0.4	128
46	Robotic biomarkers in RETT Syndrome: Evaluating stiffness. , 2016, , .		5
46	Robotic biomarkers in RETT Syndrome: Evaluating stiffness., 2016,,. Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke. Restorative Neurology and Neuroscience, 2016, 34, 677-689.	0.4	5
	Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke.	0.4	
47	Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke. Restorative Neurology and Neuroscience, 2016, 34, 677-689. Long-Term Distributed Repetitive Transcranial Magnetic Stimulation for Tinnitus: A Feasibility Study.		15
47	Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke. Restorative Neurology and Neuroscience, 2016, 34, 677-689. Long-Term Distributed Repetitive Transcranial Magnetic Stimulation for Tinnitus: A Feasibility Study. Neuromodulation, 2016, 19, 249-253. Center of Pressure Speed Changes with tDCS Versus GVS in Patients with Lateropulsion after Stroke.	0.4	15 6
48	Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke. Restorative Neurology and Neuroscience, 2016, 34, 677-689. Long-Term Distributed Repetitive Transcranial Magnetic Stimulation for Tinnitus: A Feasibility Study. Neuromodulation, 2016, 19, 249-253. Center of Pressure Speed Changes with tDCS Versus GVS in Patients with Lateropulsion after Stroke. Brain Stimulation, 2016, 9, 796-798.	0.4	15 6 15
47 48 49 50	Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke. Restorative Neurology and Neuroscience, 2016, 34, 677-689. Long-Term Distributed Repetitive Transcranial Magnetic Stimulation for Tinnitus: A Feasibility Study. Neuromodulation, 2016, 19, 249-253. Center of Pressure Speed Changes with tDCS Versus GVS in Patients with Lateropulsion after Stroke. Brain Stimulation, 2016, 9, 796-798. Cerebellar Transcranial Direct Current Stimulation (ctDCS). Neuroscientist, 2016, 22, 83-97. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct	0.4	15 6 15 177
47 48 49 50	Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke. Restorative Neurology and Neuroscience, 2016, 34, 677-689. Long-Term Distributed Repetitive Transcranial Magnetic Stimulation for Tinnitus: A Feasibility Study. Neuromodulation, 2016, 19, 249-253. Center of Pressure Speed Changes with tDCS Versus GVS in Patients with Lateropulsion after Stroke. Brain Stimulation, 2016, 9, 796-798. Cerebellar Transcranial Direct Current Stimulation (ctDCS). Neuroscientist, 2016, 22, 83-97. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS). PLoS ONE, 2016, 11, e0152331.	0.4	15 6 15 177

#	Article	IF	Citations
55	Stroke subtype and motor impairment influence contralesional excitability. Neurology, 2015, 85, 517-520.	1.5	22
56	SIRRACT. Neurorehabilitation and Neural Repair, 2015, 29, 407-415.	1.4	70
57	Long-term repetitive transcranial magnetic stimulation therapy: new research questions arising from one tinnitus case?. BMJ Case Reports, 2014, 2014, bcr2014207203-bcr2014207203.	0.2	3
58	The Effects of Vestibular Stimulation and Fatigue on Postural Control in Classical Ballet Dancers. Journal of Dance Medicine and Science, 2014, 18, 67-73.	0.2	23
59	The Outlook for Non-invasive Electrical Brain Stimulation. Brain Stimulation, 2014, 7, 771-772.	0.7	1
60	Movement-generated afference paired with transcranial magnetic stimulation: an associative stimulation paradigm. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 31.	2.4	14
61	Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS. NeuroImage, 2013, 74, 266-275.	2.1	381
62	Classification of methods in transcranial Electrical Stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. Journal of Neuroscience Methods, 2013, 219, 297-311.	1.3	186
63	Transcranial devices are not playthings. Nature, 2013, 501, 167-167.	13.7	38
64	The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases. Neurotherapeutics, 2013, 10, 808-816.	2.1	18
65	Improved motor performance in chronic spinal cord injury following upper-limb robotic training. NeuroRehabilitation, 2013, 33, 57-65.	0.5	36
66	Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: The dimension of timing. NeuroRehabilitation, 2013, 33, 49-56.	0.5	84
67	Preserved corticospinal conduction without voluntary movement after spinal cord injury. Spinal Cord, 2013, 51, 765-767.	0.9	28
68	Transcranial Magnetic Stimulation as an Investigative Tool for Motor Dysfunction and Recovery in Stroke: An Overview for Neurorehabilitation Clinicians. Neuromodulation, 2012, 15, 316-325.	0.4	44
69	Gait Training in Human Spinal Cord Injury Using Electromechanical Systems: Effect of Device Type and Patient Characteristics. Archives of Physical Medicine and Rehabilitation, 2012, 93, 404-412.	0.5	56
70	Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation, 2012, 5, 175-195.	0.7	1,122
71	`An observational report of intensive robotic and manual gait training in sub-acute stroke. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 13.	2.4	31
72	Transcranial Brain Stimulation: Clinical Applications and Future Directions. Neurosurgery Clinics of North America, 2011, 22, 233-251.	0.8	50

#	Article	IF	CITATIONS
73	Spinal associative stimulation: A non-invasive stimulation paradigm to modulate spinal excitability. Clinical Neurophysiology, 2011, 122, 2254-2259.	0.7	64
74	Safety of Theta Burst Transcranial Magnetic Stimulation: A Systematic Review of the Literature. Journal of Clinical Neurophysiology, 2011, 28, 67-74.	0.9	195
75	Neuronavigation Increases the Physiologic and Behavioral Effects of Low-Frequency rTMS of Primary Motor Cortex in Healthy Subjects. Brain Topography, 2011, 24, 54-64.	0.8	75
76	Reversal of TMS-induced motor twitch by training is associated with a reduction in excitability of the antagonist muscle. Journal of NeuroEngineering and Rehabilitation, 2011, 8, 46.	2.4	13
77	Corticomotor excitability of wrist flexor and extensor muscles during active and passive movement. Human Movement Science, 2010, 29, 494-501.	0.6	40
78	Reduction of Spasticity With Repetitive Transcranial Magnetic Stimulation in Patients With Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2010, 24, 435-441.	1.4	107
79	Robotic Devices as Therapeutic and Diagnostic Tools for Stroke Recovery. Archives of Neurology, 2009, 66, 1086-90.	4.9	104
80	On the understanding and development of modern physical neurorehabilitation methods: robotics and non-invasive brain stimulation. Journal of NeuroEngineering and Rehabilitation, 2009, 6, 3.	2.4	16
81	Transcranial DC Stimulation Coupled With TENS for the Treatment of Chronic Pain. Clinical Journal of Pain, 2009, 25, 691-695.	0.8	100
82	Improvement in Aerobic Capacity After an Exercise Program in Sporadic Inclusion Body Myositis. Journal of Clinical Neuromuscular Disease, 2009, 10, 178-184.	0.3	85
83	Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke. Restorative Neurology and Neuroscience, 2009, 27, 199-207.	0.4	112
84	Modulating the healthy and affected motor cortex with repetitive transcranial magnetic stimulation in stroke: Development of new strategies for neurorehabilitation. NeuroRehabilitation, 2008, 23, 3-14.	0.5	15
85	Modulating the healthy and affected motor cortex with repetitive transcranial magnetic stimulation in stroke: development of new strategies for neurorehabilitation. NeuroRehabilitation, 2008, 23, 3-14.	0.5	9
86	Effects of experience in a dynamic environment on postural control. British Journal of Sports Medicine, 2007, 42, 16-21.	3.1	54
87	The Effectiveness of an Individualized, Home-Based Functional Exercise Program for Patients With Sporadic Inclusion Body Myositis. Journal of Clinical Neuromuscular Disease, 2007, 8, 187-194.	0.3	38
88	Repetitive paired-pulse TMS at I-wave periodicity markedly increases corticospinal excitability: A new technique for modulating synaptic plasticity. Clinical Neurophysiology, 2006, 117, 61-66.	0.7	135
89	Blinded placebo crossover study of gabapentin in primary orthostatic tremor. Movement Disorders, 2006, 21, 900-905.	2.2	45
90	Eccentric Utilization Ratio: Effect of Sport and Phase of Training. Journal of Strength and Conditioning Research, 2006, 20, 992.	1.0	73

Dylan J Edwards

#	Article	IF	CITATIONS
91	Gabapentin can improve postural stability and quality of life in primary orthostatic tremor. Movement Disorders, 2005, 20, 865-870.	2.2	40
92	Temporal aspects of passive movement-related corticomotor inhibition. Human Movement Science, 2004, 23, 379-387.	0.6	8
93	Reduced corticomotor excitability with cyclic passive movement: A study using Transcranial Magnetic Stimulation. Human Movement Science, 2002, 21, 533-540.	0.6	14