
Philip Bonello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11231166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonlinear and linearised analyses of a generic rotor on single-pad foil-air bearings using Galerkin Reduction with different applied air film conditions. Journal of Sound and Vibration, 2022, 525, 116774.	3.9	10
2	A comparison of modal analyses of foil-air bearing rotor systems using two alternative linearisation methods. Mechanical Systems and Signal Processing, 2022, 170, 108714.	8.0	9
3	Analytical and Experimental Investigation of a Curved Piezoelectric Energy Harvester. Sensors, 2022, 22, 2207.	3.8	4
4	Development of a rotor test rig with a novel controllable preload foil-air bearing. Precision Engineering, 2022, 76, 340-359.	3.4	7
5	Experimental validation of FEM-computed stress to tip deflection ratios of aero-engine compressor blade vibration modes and quantification of associated uncertainties. Mechanical Systems and Signal Processing, 2022, 178, 109257.	8.0	12
6	An experimentally validated modal model simulator for the assessment of different Blade Tip Timing algorithms. Mechanical Systems and Signal Processing, 2020, 136, 106484.	8.0	21
7	The effects of air film pressure constraints and top foil detachment on the static equilibrium, stability and modal characteristics of a foil-air bearing rotor model. Journal of Sound and Vibration, 2020, 485, 115590.	3.9	12
8	The efficient inclusion of rotation-induced inertia effects in a shaft-blisk assembly model using zero-speed modes. Journal of Sound and Vibration, 2020, 479, 115357.	3.9	6
9	Determination of Simultaneous Steady-State Movements Using Blade Tip Timing Data. Journal of Vibration and Acoustics, Transactions of the ASME, 2020, 142, .	1.6	12
10	Improved non-invasive inverse problem method for the balancing of nonlinear squeeze-film damped rotordynamic systems. Mechanical Systems and Signal Processing, 2019, 117, 569-593.	8.0	9
11	The extraction of Campbell diagrams from the dynamical system representation of a foil-air bearing rotor model. Mechanical Systems and Signal Processing, 2019, 129, 502-530.	8.0	23
12	A novel method for the determination of the change in blade tip timing probe sensing position due to steady movements. Mechanical Systems and Signal Processing, 2019, 126, 686-710.	8.0	47
13	Empirical identification of the inverse model of a squeeze-film damper bearing using neural networks and its application to a nonlinear inverse problem. JVC/Journal of Vibration and Control, 2018, 24, 357-378.	2.6	6
14	Effectiveness Testing of an Inverse Method for Balancing Nonlinear Rotordynamic Systems. , 2018, , .		0
15	Improved Empirical Identification of the Inverse Model of a Squeeze-Film Damper Bearing Based on a Recurrent Neural Network. , 2018, , .		1
16	The Determination of Steady-State Movements Using Blade Tip Timing Data. , 2018, , .		6
17	A Neural Network Identification Technique for a Foil-Air Bearing Under Variable Speed Conditions and Its Application to Unbalance Response Analysis. Journal of Tribology, 2017, 139, .	1.9	8
18	An equivalent unbalance identification method for the balancing of nonlinear squeeze-film damped rotordynamic systems. Journal of Sound and Vibration, 2016, 360, 53-73.	3.9	24

Philip Bonello

#	Article	IF	CITATIONS
19	A Neural Network Identification Technique for a Foil-Air Bearing and its Application to Unbalance Response Analysis. , 2015, , .		1
20	Nonlinear Dynamic Analysis of a Turbocharger on Foil-Air Bearings With Focus on Stability and Self-Excited Vibration. , 2014, , .		4
21	Unbalance Identification and Balancing of Nonlinear Rotodynamic Systems. , 2014, , .		3
22	Efficient Techniques for the Computation of the Nonlinear Dynamics of a Foil-Air Bearing Rotor System. , 2013, , .		13
23	A Computational Parametric Analysis of the Vibration of a Three-Spool Aero-Engine Under Multifrequency Unbalance Excitation. Journal of Engineering for Gas Turbines and Power, 2011, 133, .	1.1	9
24	An Investigation Into Two Alternative Approaches for the Identification of SFD Bearings for Aeroengine Analysis. , 2011, , .		4
25	A Computational Parametric Analysis of the Vibration of a Three-Spool Aero-Engine Under Multi-Frequency Unbalance Excitation. , 2010, , .		3
26	Improved identification of squeeze-film damper models for aeroengine vibration analysis. Tribology International, 2010, 43, 1639-1649.	5.9	23
27	Computational Studies of the Unbalance Response of a Whole Aero-Engine Model With Squeeze-Film Bearings. Journal of Engineering for Gas Turbines and Power, 2010, 132, .	1.1	9
28	A receptance harmonic balance technique for the computation of the vibration of a whole aero-engine model with nonlinear bearings. Journal of Sound and Vibration, 2009, 324, 221-242.	3.9	48
29	An impulsive receptance technique for the time domain computation of the vibration of a whole aero-engine model with nonlinear bearings. Journal of Sound and Vibration, 2008, 318, 592-605.	3.9	32
30	Vibration control using an adaptive tuned vibration absorber with a variable curvature stiffness element. Smart Materials and Structures, 2005, 14, 1055-1065.	3.5	59
31	Designs for an adaptive tuned vibration absorber with variable shape stiffness element. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461, 3955-3976.	2.1	24
32	A Study of the Nonlinear Interaction Between an Eccentric Squeeze Film Damper and an Unbalanced Flexible Rotor. Journal of Engineering for Gas Turbines and Power, 2004, 126, 855-866.	1.1	24
33	Adaptive Tuned Vibration Absorbers: Design Principles, Concepts and Physical Implementation. , 0, , .		8