
Seth R Bordenstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1123031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Cif proteins from Wolbachia prophage WO modify sperm genome integrity to establish cytoplasmic incompatibility. PLoS Biology, 2022, 20, e3001584.	5.6	25
2	A Margulian View of Symbiosis and Speciation: the Nasonia Wasp System. Symbiosis, 2022, 87, 3-10.	2.3	4
3	Microbiome-associated human genetic variants impact phenome-wide disease risk. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
4	Widespread phages of endosymbionts: Phage WO genomics and the proposed taxonomic classification of Symbioviridae. PLoS Genetics, 2022, 18, e1010227.	3.5	22
5	Microbiome reduction and endosymbiont gain from a switch in sea urchin life history. Proceedings of the United States of America, 2021, 118, .	7.1	20
6	Genomes of Gut Bacteria from <i>Nasonia</i> Wasps Shed Light on Phylosymbiosis and Microbe-Assisted Hybrid Breakdown. MSystems, 2021, 6, .	3.8	9
7	Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host and Microbe, 2021, 29, 879-893.	11.0	162
8	The impact of artificial selection for Wolbachia-mediated dengue virus blocking on phage WO. PLoS Neglected Tropical Diseases, 2021, 15, e0009637.	3.0	6
9	The impacts of cytoplasmic incompatibility factor (<i>cifA</i> and <i>cifB</i>) genetic variation on phenotypes. Genetics, 2021, 217, 1-13.	2.9	31
10	A single synonymous nucleotide change impacts the male-killing phenotype of prophage WO gene wmk. ELife, 2021, 10, .	6.0	10
11	The microbiome impacts host hybridization and speciation. PLoS Biology, 2021, 19, e3001417.	5.6	13
12	Microorganisms in the reproductive tissues of arthropods. Nature Reviews Microbiology, 2020, 18, 97-111.	28.6	74
13	The emergence of microbiome centres. Nature Microbiology, 2020, 5, 2-3.	13.3	13
14	Discover the Microbes Within! The Wolbachia Project: Citizen Science and Student-Based Discoveries for 15 Years and Counting. Genetics, 2020, 216, 263-268.	2.9	6
15	Evolution-guided mutagenesis of the cytoplasmic incompatibility proteins: Identifying CifA's complex functional repertoire and new essential regions in CifB. PLoS Pathogens, 2020, 16, e1008794.	4.7	25
16	Reply to Kenyon, "Are Differences in the Oral Microbiome Due to Ancestry or Socioeconomics?― MSystems, 2020, 5, .	3.8	0
17	An introduction to phylosymbiosis. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192900.	2.6	163
18	Transgenic Testing Does Not Support a Role for Additional Candidate Genes in <i>Wolbachia</i> Male Killing or Cytoplasmic Incompatibility. MSystems, 2020, 5, .	3.8	11

#	Article	IF	CITATIONS
19	Symbiont-mediated cytoplasmic incompatibility: What have we learned in 50 years?. ELife, 2020, 9, .	6.0	91
20	Title is missing!. , 2020, 16, e1008794.		0
21	Title is missing!. , 2020, 16, e1008794.		Ο
22	Title is missing!. , 2020, 16, e1008794.		0
23	Title is missing!. , 2020, 16, e1008794.		Ο
24	Two-By-One model of cytoplasmic incompatibility: Synthetic recapitulation by transgenic expression of cifA and cifB in Drosophila. PLoS Genetics, 2019, 15, e1008221.	3.5	93
25	Phylosymbiosis Impacts Adaptive Traits in <i>Nasonia</i> Wasps. MBio, 2019, 10, .	4.1	31
26	The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLoS Pathogens, 2019, 15, e1007936.	4.7	64
27	Cigarette smoking and oral microbiota in low-income and African-American populations. Journal of Epidemiology and Community Health, 2019, 73, 1108-1115.	3.7	26
28	Models and Nomenclature for Cytoplasmic Incompatibility: Caution over Premature Conclusions – A Response to Beckmann et al Trends in Genetics, 2019, 35, 397-399.	6.7	33
29	The Wolbachia mobilome in Culex pipiens includes a putative plasmid. Nature Communications, 2019, 10, 1051.	12.8	42
30	Racial Differences in the Oral Microbiome: Data from Low-Income Populations of African Ancestry and European Ancestry. MSystems, 2019, 4, .	3.8	32
31	Minimum Information about an Uncultivated Virus Genome (MIUViG). Nature Biotechnology, 2019, 37, 29-37.	17.5	414
32	Paternal Grandmother Age Affects the Strength of <i>Wolbachia</i> -Induced Cytoplasmic Incompatibility in Drosophila melanogaster. MBio, 2019, 10, .	4.1	37
33	One prophage WO gene rescues cytoplasmic incompatibility in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4987-4991.	7.1	148
34	Evolutionary Genetics of Cytoplasmic Incompatibility Genes cifA and cifB in Prophage WO of Wolbachia. Genome Biology and Evolution, 2018, 10, 434-451.	2.5	143
35	Gut microbes limit growth in house sparrow nestlings (<i>Passer domesticus</i>) but not through limitations in digestive capacity. Integrative Zoology, 2018, 13, 139-151.	2.6	42
36	Microbial communities exhibit host species distinguishability and phylosymbiosis along the length of the gastrointestinal tract. Molecular Ecology, 2018, 27, 1874-1883.	3.9	73

#	Article	IF	CITATIONS
37	Finer-Scale Phylosymbiosis: Insights from Insect Viromes. MSystems, 2018, 3, .	3.8	27
38	Gut microbiota diversity across ethnicities in the United States. PLoS Biology, 2018, 16, e2006842.	5.6	216
39	Distinct mucosal microbial communities in infants with surgical necrotizing enterocolitis correlate with age and antibiotic exposure. PLoS ONE, 2018, 13, e0206366.	2.5	14
40	The Maternal Effect Gene Wds Controls Wolbachia Titer in Nasonia. Current Biology, 2018, 28, 1692-1702.e6.	3.9	51
41	Microbial Misandry: Discovery of a Spiroplasma Male-Killing Toxin. Cell Host and Microbe, 2018, 23, 689-690.	11.0	2
42	Microbe Profile: Wolbachia: a sex selector, a viral protector and a target to treat filarial nematodes. Microbiology (United Kingdom), 2018, 164, 1345-1347.	1.8	34
43	Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature, 2017, 543, 243-247.	27.8	366
44	Gut microbial ecology of lizards: insights into diversity in the wild, effects of captivity, variation across gut regions and transmission. Molecular Ecology, 2017, 26, 1175-1189.	3.9	144
45	Parasite Microbiome Project: Systematic Investigation of Microbiome Dynamics within and across Parasite-Host Interactions. MSystems, 2017, 2, .	3.8	42
46	Comparative Genomics of Two Closely Related <i>Wolbachia</i> with Different Reproductive Effects on Hosts. Genome Biology and Evolution, 2016, 8, 1526-1542.	2.5	35
47	Disentangling a Holobiont – Recent Advances and Perspectives in Nasonia Wasps. Frontiers in Microbiology, 2016, 7, 1478.	3.5	48
48	Getting the Hologenome Concept Right: an Eco-Evolutionary Framework for Hosts and Their Microbiomes. MSystems, 2016, 1, .	3.8	388
49	Speciation by Symbiosis: the Microbiome and Behavior. MBio, 2016, 7, e01785.	4.1	120
50	<i>Wolbachia</i> mosquito control: Regulated. Science, 2016, 352, 526-527.	12.6	11
51	Eukaryotic association module in phage WO genomes from Wolbachia. Nature Communications, 2016, 7, 13155.	12.8	133
52	Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency. Nature Communications, 2016, 7, 11240.	12.8	91
53	Physiological and microbial adjustments to diet quality permit facultative herbivory in an omnivorous lizard. Journal of Experimental Biology, 2016, 219, 1903-1912. Wolbachia pipientis should not be split into multiple species: A response to RamÃrez-Puebla et al.,	1.7	38
54	"Species in Wolbachia? Proposal for the designation of â€ [¬] Candidatus Wolbachia bourtzisiiâ€ [¬] M, â€ [¬] Candidatus Wolbachia onchocercicolaâ€ [¬] M, â€ [¬] Candidatus Wolbachia blaxteriâ€ [¬] M, â€ [¬] Candidatus Wolbachia brugiiâ€ [¬] M, â€ [¬] Candidatus Wolbachia blaxteriâ€ [¬] M, â€ [¬] Candidatus Wolbachia brugiiâ€ [¬] M, â€ [¬] Candidatus Wolbachia collembolicolaâ€ [¬] M and â€ [¬] Candidatus Wolbachia multihospitumâ€ [¬] M for the different species within Wolbachia supergroups― Systematic and Applied Microbiology, 2016, 39, 220-222.		37

#	Article	IF	CITATIONS
55	Fecal Transplants: What Is Being Transferred?. PLoS Biology, 2016, 14, e1002503.	5.6	128
56	Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History. PLoS Biology, 2016, 14, e2000225.	5.6	475
57	An optimized approach to germ-free rearing in the jewel wasp <i>Nasonia</i> . PeerJ, 2016, 4, e2316.	2.0	16
58	Rethinking heritability of the microbiome. Science, 2015, 349, 1172-1173.	12.6	108
59	Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes. PLoS Biology, 2015, 13, e1002226.	5.6	868
60	<i>Wolbachia</i> co-infection in a hybrid zone: discovery of horizontal gene transfers from two <i>Wolbachia</i> supergroups into an animal genome. PeerJ, 2015, 3, e1479.	2.0	26
61	Tandem-repeat protein domains across the tree of life. PeerJ, 2015, 3, e732.	2.0	63
62	Friends with social benefits: host-microbe interactions as a driver of brain evolution and development?. Frontiers in Cellular and Infection Microbiology, 2014, 4, 147.	3.9	118
63	Response to Comment on "The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus <i>Nasonia</i> ― Science, 2014, 345, 1011-1011.	12.6	12
64	The relative importance of DNA methylation and <i>Dnmt2</i> -mediated epigenetic regulation on <i>Wolbachia</i> densities and cytoplasmic incompatibility. PeerJ, 2014, 2, e678.	2.0	30
65	Early life establishment of site-specific microbial communities in the gut. Gut Microbes, 2014, 5, 192-201.	9.8	55
66	Antibacterial gene transfer across the tree of life. ELife, 2014, 3, .	6.0	66
67	Ankyrin domains across the Tree of Life. PeerJ, 2014, 2, e264.	2.0	81
68	Recent genome reduction of <i>Wolbachia</i> in <i>Drosophila recens</i> targets phage WO and narrows candidates for reproductive parasitism. PeerJ, 2014, 2, e529.	2.0	51
69	Wolbachia: Can we save lives with a great pandemic?. Trends in Parasitology, 2013, 29, 385-393.	3.3	79
70	The Hologenomic Basis of Speciation: Gut Bacteria Cause Hybrid Lethality in the Genus <i>Nasonia</i> . Science, 2013, 341, 667-669.	12.6	379
71	The capacious hologenome. Zoology, 2013, 116, 260-261.	1.2	50
72	Mom Knows Best: The Universality of Maternal Microbial Transmission. PLoS Biology, 2013, 11, e1001631.	5.6	649

#	Article	IF	CITATIONS
73	Comparative Genomic Analysis of East Asian and Non-Asian Helicobacter pylori Strains Identifies Rapidly Evolving Genes. PLoS ONE, 2013, 8, e55120.	2.5	27
74	Speciation by symbiosis. Trends in Ecology and Evolution, 2012, 27, 443-451.	8.7	326
75	The complexity of virus systems: the case of endosymbionts. Current Opinion in Microbiology, 2012, 15, 546-552.	5.1	32
76	In Vitro Cultivation of the Hymenoptera Genetic Model, Nasonia. PLoS ONE, 2012, 7, e51269.	2.5	16
77	J-Western Forms of Helicobacter pylori cagA Constitute a Distinct Phylogenetic Group with a Widespread Geographic Distribution. Journal of Bacteriology, 2012, 194, 1593-1604.	2.2	20
78	THE ROLES OF HOST EVOLUTIONARY RELATIONSHIPS (GENUS:â€,NASONIA) AND DEVELOPMENT IN STRUCTURING MICROBIAL COMMUNITIES. Evolution; International Journal of Organic Evolution, 2012, 66, 349-362.	2.3	166
79	Evolutionary Genomics of a Temperate Bacteriophage in an Obligate Intracellular Bacteria (Wolbachia). PLoS ONE, 2011, 6, e24984.	2.5	45
80	Temperature Affects the Tripartite Interactions between Bacteriophage WO, Wolbachia, and Cytoplasmic Incompatibility. PLoS ONE, 2011, 6, e29106.	2.5	108
81	Complete Bacteriophage Transfer in a Bacterial Endosymbiont (Wolbachia) Determined by Targeted Genome Capture. Genome Biology and Evolution, 2011, 3, 209-218.	2.5	89
82	Correlations Between Bacterial Ecology and Mobile DNA. Current Microbiology, 2011, 62, 198-208.	2.2	93
83	Disruption of the Termite Gut Microbiota and Its Prolonged Consequences for Fitness. Applied and Environmental Microbiology, 2011, 77, 4303-4312.	3.1	107
84	Decoupling of Host–Symbiont–Phage Coadaptations Following Transfer Between Insect Species. Genetics, 2011, 187, 203-215.	2.9	43
85	Lateral Phage Transfer in Obligate Intracellular Bacteria (Wolbachia): Verification from Natural Populations. Molecular Biology and Evolution, 2010, 27, 501-505.	8.9	63
86	Molecular Evolution of the <i>Helicobacter pylori</i> Vacuolating Toxin Gene <i>vacA</i> . Journal of Bacteriology, 2010, 192, 6126-6135.	2.2	51
87	Phage WO of Wolbachia: lambda of the endosymbiont world. Trends in Microbiology, 2010, 18, 173-181.	7.7	114
88	Functional and Evolutionary Insights from the Genomes of Three Parasitoid <i>Nasonia</i> Species. Science, 2010, 327, 343-348.	12.6	808
89	Using the <i>Wolbachia</i> Bacterial Symbiont to Teach Inquiry-Based Science: A High School Laboratory Series. American Biology Teacher, 2010, 72, 478-483.	0.2	11
90	Extensive genomic diversity of closely related Wolbachia strains. Microbiology (United Kingdom), 2009, 155, 2211-2222.	1.8	87

#	Article	IF	CITATIONS
91	Parasitism and Mutualism in Wolbachia: What the Phylogenomic Trees Can and Cannot Say. Molecular Biology and Evolution, 2008, 26, 231-241.	8.9	86
92	New criteria for selecting the origin of DNA replication in Wolbachia and closely related bacteria. BMC Genomics, 2007, 8, 182.	2.8	34
93	Evolutionary Genomics: Transdomain Gene Transfers. Current Biology, 2007, 17, R935-R936.	3.9	7
94	Widespread Recombination Throughout Wolbachia Genomes. Molecular Biology and Evolution, 2006, 23, 437-449.	8.9	209
95	Toward a Wolbachia Multilocus Sequence Typing System: Discrimination of Wolbachia Strains Present in Drosophila Species. Current Microbiology, 2006, 53, 388-395.	2.2	84
96	The Tripartite Associations between Bacteriophage, Wolbachia, and Arthropods. PLoS Pathogens, 2006, 2, e43.	4.7	149
97	Multilocus Sequence Typing System for the Endosymbiont Wolbachia pipientis. Applied and Environmental Microbiology, 2006, 72, 7098-7110.	3.1	730
98	Mobile DNA in obligate intracellular bacteria. Nature Reviews Microbiology, 2005, 3, 688-699.	28.6	159
99	Discovery of a Novel Wolbachia Supergroup in Isoptera. Current Microbiology, 2005, 51, 393-398.	2.2	105
100	Comparative Sequence Analysis of IS50/Tn5 Transposase. Journal of Bacteriology, 2004, 186, 8240-8247.	2.2	11
101	Bacteriophage Flux in Endosymbionts (Wolbachia): Infection Frequency, Lateral Transfer, and Recombination Rates. Molecular Biology and Evolution, 2004, 21, 1981-1991.	8.9	178
102	Genome Evolution in an Insect Cell: Distinct Features of an Ant-Bacterial Partnership. Biological Bulletin, 2003, 204, 221-231.	1.8	24
103	Host Genotype Determines Cytoplasmic Incompatibility Type in the Haplodiploid Genus Nasonia. Genetics, 2003, 164, 223-233.	2.9	84
104	Symbiosis And The Origin Of Species. Contemporary Topics in Entomology Series, 2003, , 283-304.	0.3	63
105	Absence of wolbachia in nonfilariid nematodes. Journal of Nematology, 2003, 35, 266-70.	0.9	26
106	Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature, 2001, 409, 707-710.	27.8	392
107	Do Wolbachia influence fecundity in Nasonia vitripennis?. Heredity, 2000, 84, 54-62.	2.6	58
108	INTRASPECIFIC VARIATION IN SEXUAL ISOLATION IN THE JEWEL WASP NASONIA. Evolution; International Journal of Organic Evolution, 2000, 54, 567-573.	2.3	50

#	Article	IF	CITATIONS
109	Effects of A and B Wolbachia and Host Genotype on Interspecies Cytoplasmic Incompatibility in Nasonia. Genetics, 1998, 148, 1833-1844.	2.9	92