Thomas Scattolin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1122972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous Flow Synthesis of Sulfur―and Seleniumâ^'NHC Compounds (NHC= <i>N</i> â€Heterocyclic) Tj ETQq	1 1 0.7843 2.4	314 rgBT /○ 6
2	A Simple Synthetic Route to Wellâ€Defined [Pd(NHC)Cl(1â€ ^t Buâ€indenyl)] Preâ€catalysts for Crossâ€Coupling Reactions. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	9
3	Continuous Flow Synthesis of NHCâ€Coinage Metal Amido and Thiolato Complexes: A Mechanismâ€based Process Development. Chemistry Methods, 2022, 2, .	3.8	7
4	A simple synthetic entryway into new families of NHC–gold-amido complexes and their <i>in vitro</i> antitumor activity. Dalton Transactions, 2022, 51, 3462-3471.	3.3	8
5	Synthesis, characterization, and anticancer activity of ferrocenyl complexes bearing different organopalladium fragments. Applied Organometallic Chemistry, 2022, 36, .	3.5	3
6	Versatile and Highly Efficient <i>trans</i> â€{Pd(NHC)Cl ₂ (DMS/THT)] Precatalysts for Câ^'N and Câ^'C Coupling Reactions in Green Solvents. European Journal of Organic Chemistry, 2022, 2022, .	2.4	8
7	A Green Synthesis of Carbeneâ€Metalâ€Amides (CMAs) and Carbolineâ€Derived CMAs with Potent <i>inâ€vitro</i> and <i>ex vivo</i> Anticancer Activity. ChemMedChem, 2022, , .	3.2	10
8	Indenyl and Allyl Palladate Complexes Bearing <i>N</i> â€Heterocyclic Carbene Ligands: an Easily Accessible Class of New Anticancer Drug Candidates. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	13
9	A Nucleophilic Deprotection of Carbamate Mediated by 2-Mercaptoethanol. Organic Letters, 2022, 24, 3736-3740.	4.6	3
10	Flow chemistry of main group and transition metal complexes. Trends in Chemistry, 2022, 4, 584-607.	8.5	7
11	Synthesis of Carbeneâ€Metalâ€Amido (CMA) Complexes and Their Use as Precatalysts for the Activatorâ€Free, Goldâ€Catalyzed Addition of Carboxylic Acids to Alkynes. Chemistry - A European Journal, 2022, 28, .	3.3	7
12	Cationic palladium(<scp>ii</scp>)-indenyl complexes bearing phosphines as ancillary ligands: synthesis, and study of indenyl amination and anticancer activity. Dalton Transactions, 2022, 51, 11135-11151.	3.3	3
13	Synthesis and catalytic activity of palladium complexes bearing <i>N</i> -heterocyclic carbenes (NHCs) and 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) ligands. Dalton Transactions, 2021, 50, 9491-9499.	3.3	12
14	Mononuclear and dinuclear gold(i) complexes with a caffeine-based di(N-heterocyclic carbene) ligand: synthesis, reactivity and structural DFT analysis. New Journal of Chemistry, 2021, 45, 961-971.	2.8	15
15	Straightforward synthetic route to gold(<scp>i</scp>)-thiolato glycoconjugate complexes bearing NHC ligands (NHC = N-heterocyclic carbene) and their promising anticancer activity. New Journal of Chemistry, 2021, 45, 9995-10001.	2.8	13
16	Continuous Flow Synthesis of Metal–NHC Complexes**. Chemistry - A European Journal, 2021, 27, 5653-5657.	3.3	34
17	A critical review of palladium organometallic anticancer agents. Cell Reports Physical Science, 2021, 2, 100446.	5.6	55
18	Simple Synthetic Routes to Carbeneâ€Mâ€Amido (M=Cu, Ag, Au) Complexes for Luminescence and Photocatalysis Applications. Chemistry - A European Journal, 2021, 27, 11904-11911.	3.3	42

#	Article	IF	CITATIONS
19	Continuous Flow Synthesis of [Au(NHC)(Aryl)] (NHC=Nâ€Heterocyclic Carbene) Complexes. Chemistry - A European Journal, 2021, 27, 13342-13345.	3.3	11
20	Synthesis and anticancer activity of Pt(0)â€olefin complexes bearing 1,3,5â€triazaâ€7â€phosphaadamantane and <i>N</i> â€heterocyclic carbene ligands. Applied Organometallic Chemistry, 2021, 35, e6438.	3.5	3
21	Synthesis, characterization and anticancer activity of palladium allyl complexes bearing benzimidazole-based N-heterocyclic carbene (NHC) ligands. Polyhedron, 2021, 207, 115381.	2.2	10
22	Imidazo[1,5-a]pyridine-3-ylidenes and dipyridoimidazolinylidenes as ancillary ligands in Palladium allyl complexes with potent in vitro anticancer activity. Journal of Organometallic Chemistry, 2021, 952, 122014.	1.8	6
23	N-Heterocyclic carbene complexes enabling the $\hat{I}\pm$ -arylation of carbonyl compounds. Chemical Communications, 2021, 57, 4354-4375.	4.1	40
24	Conversion of Pd(<scp>i</scp>) off-cycle species into highly efficient cross-coupling catalysts. Dalton Transactions, 2021, 50, 5420-5427.	3.3	6
25	Reaction Parameterization as a Tool for Development in Organometallic Catalysis. , 2021, , .		2
26	Straightforward synthesis of [Cu(NHC)(alkynyl)] and [Cu(NHC)(thiolato)] complexes (NHC =) Tj ETQq0 0 0 rgBT /	Oygrlock	19 Tf 50 462
27	Facile Access to AgOCF ₃ and Its New Applications as a Reservoir for OCF ₂ for the Direct Synthesis of Nâ^'CF ₃ , Aryl or Alkyl Carbamoyl Fluorides. Chemistry - A European Journal, 2020, 26, 2183-2186.	3.3	35
28	Synthesis, in silico and in vitro Evaluation of Novel Oxazolopyrimidines as Promising Anticancer Agents. Helvetica Chimica Acta, 2020, 103, e2000169.	1.6	10
29	Synthetic Routes to Late Transition Metal–NHC Complexes. Trends in Chemistry, 2020, 2, 721-736.	8.5	118
30	Measuring the Olefinâ€ŧoâ€₽d(0) Bond Strength: A Kinetic Study Involving Olefin Exchange Reactions on Palladium(0) Complexes Bearing Isocyanide Ligands. Helvetica Chimica Acta, 2020, 103, e2000150.	1.6	1
31	The anticancer activity of an air-stable Pd(<scp>i</scp>)-NHC (NHC = N-heterocyclic carbene) dimer. Chemical Communications, 2020, 56, 12238-12241.	4.1	31
32	Dinuclear gold(<scp>i</scp>) complexes: from bonding to applications. Chemical Society Reviews, 2020, 49, 7044-7100.	38.1	66
33	Palladium(II)â€Ĥ ³ â€Allyl Complexes Bearing <i>N</i> â€Trifluoromethyl <i>N</i> â€Heterocyclic Carbenes: A New Generation of Anticancer Agents that Restrain the Growth of Highâ€Grade Serous Ovarian Cancer Tumoroids. Chemistry - A European Journal, 2020, 26, 11868-11876.	3.3	62
34	Synthesis and comparative study of the anticancer activity of î·3-allyl palladium(II) complexes bearing N-heterocyclic carbenes as ancillary ligands. Polyhedron, 2020, 186, 114607.	2.2	18
35	Allyl palladium complexes bearing carbohydrateâ€based <i>N</i> â€heterocyclic carbenes: Anticancer agents for selective and potent <i>in vitro</i> cytotoxicity. Applied Organometallic Chemistry, 2020, 34, e5876.	3.5	30

Using sodium acetate for the synthesis of [Au(NHC)X] complexes. Dalton Transactions, 2020, 49, 3.3 28 9694-9700.

THOMAS SCATTOLIN

#	Article	IF	CITATIONS
37	Chemoselective oxidative addition of vinyl sulfones mediated by palladium complexes bearing picolyl-N-heterocyclic carbene ligands Dalton Transactions, 2020, 49, 5684-5694.	3.3	8
38	N â€īrifluoromethyl Hydrazines, Indoles and Their Derivatives. Angewandte Chemie, 2020, 132, 12006-12010.	2.0	9
39	<i>N</i> â€Trifluoromethyl Hydrazines, Indoles and Their Derivatives. Angewandte Chemie - International Edition, 2020, 59, 11908-11912.	13.8	39
40	Palladium (0) olefin complexes bearing purine-based N-heterocyclic carbenes and 1,3,5-triaza-7-phosphaadamantane (PTA): Synthesis, characterization and antiproliferative activity toward human ovarian cancer cell lines. Journal of Organometallic Chemistry, 2019, 899, 120857.	1.8	32
41	Improved Synthesis, Anticancer Activity and Electrochemical Characterization of Unusual Zwitterionic Palladium Compounds with a Tenâ€Term Coordinative Ring ChemistrySelect, 2019, 4, 10911-10919.	1.5	7
42	Straightforward access to N-trifluoromethyl amides, carbamates, thiocarbamates and ureas. Nature, 2019, 573, 102-107.	27.8	96
43	The importance of the electronic and steric features of the ancillary ligands on the rate of cis–trans isomerization of olefins coordinated to palladium(0) centre. A study involving (Z)-1,2-ditosylethene as olefin model. Polyhedron, 2019, 173, 114144.	2.2	8
44	Synthesis and in-depth studies on the anticancer activity of novel palladacyclopentadienyl complexes stabilized by N-Heterocyclic carbene ligands. European Journal of Medicinal Chemistry, 2019, 179, 325-334.	5.5	28
45	Palladacyclopentadienyl complexes bearing purineâ€based Nâ€heterocyclic carbenes: A new class of promising antiproliferative agents against human ovarian cancer. Applied Organometallic Chemistry, 2019, 33, e4902.	3.5	35
46	Selenolation of Aryl Iodides and Bromides Enabled by a Bench‣table Pd ^I Dimer. Chemistry - A European Journal, 2019, 25, 9419-9422.	3.3	19
47	Câ~'l‧elective Crossâ€Coupling Enabled by a Cationic Palladium Trimer. Angewandte Chemie, 2019, 131, 217-221.	2.0	35
48	Câ^'lâ€5elective Crossâ€Coupling Enabled by a Cationic Palladium Trimer. Angewandte Chemie - International Edition, 2019, 58, 211-215.	13.8	44
49	Synthesis of novel olefin complexes of palladium(0) bearing monodentate NHC, phosphine and isocyanide spectator ligands. Polyhedron, 2018, 144, 131-143.	2.2	9
50	Investigation of (Me ₄ N)SCF ₃ as a Stable, Solid and Safe Reservoir for S=CF ₂ as a Surrogate for Thiophosgene. Chemistry - A European Journal, 2018, 24, 567-571.	3.3	18
51	Synthesis of novel allyl palladium complexes bearing purine based NHC and a water soluble phosphine and their catalytic activity in the Suzukiâ€Miyaura coupling in water. Applied Organometallic Chemistry, 2018, 32, e4034.	3.5	33
52	[1,3]-Sigmatropic Shift of an Allylic Chloride. Helvetica Chimica Acta, 2018, 101, e1800148.	1.6	3
53	Synthesis of new allyl palladium complexes bearing purine-based NHC ligands with antiproliferative and proapoptotic activities on human ovarian cancer cell lines. Dalton Transactions, 2018, 47, 13616-13630.	3.3	56
54	Siteâ€Selective Câ^'S Bond Formation at Câ^'Br over Câ^'OTf and Câ^'Cl Enabled by an Airâ€Stable, Easily Recoverable, and Recyclable Palladium(I) Catalyst. Angewandte Chemie - International Edition, 2018, 57, 12425-12429.	13.8	73

THOMAS SCATTOLIN

#	Article	IF	CITATIONS
55	Siteâ€Selective Câ^'S Bond Formation at Câ^'Br over Câ^'OTf and Câ^'Cl Enabled by an Airâ€Stable, Easily Recoverable, and Recyclable Palladium(I) Catalyst. Angewandte Chemie, 2018, 130, 12605-12609.	2.0	26
56	Synthesis and characterization of novel olefin complexes of palladium(0) with chelating bis(N-heterocyclic carbenes) as spectator ligands. Polyhedron, 2018, 154, 382-389.	2.2	12
57	Reactions of palladium(0) olefin complexes stabilized by some different hetero- and homo-ditopic spectator ligands with propargyl halides. Journal of Organometallic Chemistry, 2017, 834, 10-21.	1.8	8
58	Synthesis and reactivity toward olefin exchange and oxidative addition of some platinum(0) olefin complexes with thioquinolines as spectator ligands. Polyhedron, 2017, 129, 229-239.	2.2	6
59	Palladium(I) Dimer Enabled Extremely Rapid and Chemoselective Alkylation of Aryl Bromides over Triflates and Chlorides in Air. Angewandte Chemie - International Edition, 2017, 56, 7078-7082.	13.8	99
60	Synthesis of Isothiocyanates and Unsymmetrical Thioureas with the Bench-Stable Solid Reagent (Me ₄ N)SCF ₃ . Organic Letters, 2017, 19, 1831-1833.	4.6	33
61	Isocyanide insertion across the Pd–C bond of allenyl and propargyl palladium complexes bearing phosphoquinoline as a spectator ligand. Synthesis of a palladium complex bearing a coordinated cyclobutenyl fragment. Dalton Transactions, 2017, 46, 5210-5217.	3.3	7
62	Efficient Synthesis of Trifluoromethyl Amines through a Formal Umpolung Strategy from the Benchâ€ S table Precursor (Me ₄ N)SCF ₃ . Angewandte Chemie, 2017, 129, 227-230.	2.0	28
63	Efficient Synthesis of Trifluoromethyl Amines through a Formal Umpolung Strategy from the Benchâ€5table Precursor (Me ₄ N)SCF ₃ . Angewandte Chemie - International Edition, 2017, 56, 221-224.	13.8	85
64	Direct Synthesis of Acyl Fluorides from Carboxylic Acids with the Bench-Stable Solid Reagent (Me ₄ N)SCF ₃ . Organic Letters, 2017, 19, 5740-5743.	4.6	83
65	Reactivity of N-heterocyclic carbene–pyridine palladacyclopentadiene complexes toward halogen addition. The unpredictable course of the reaction. Dalton Transactions, 2017, 46, 10399-10407.	3.3	10
66	Palladium(I) Dimer Enabled Extremely Rapid and Chemoselective Alkylation of Aryl Bromides over Triflates and Chlorides in Air. Angewandte Chemie, 2017, 129, 7184-7188.	2.0	56
67	The unexpected case of reactions of halogens and interhalogens with halide substituted Pd(<scp>ii</scp>) Ïf-butadienyl complexes. Dalton Transactions, 2016, 45, 11560-11567.	3.3	11
68	Addition of halogens and interhalogens on palladacyclopentadienyl complexes stabilized by pyridylâ^'thioether Nâ^'S spectator ligands. Journal of Organometallic Chemistry, 2016, 808, 48-56.	1.8	14
69	Synthesis, characterization and a reactivity study of some allyl palladium complexes bearing bidentate hemi-labile carbene or mixed carbene/PPh3 ligands. Polyhedron, 2016, 119, 377-386.	2.2	20
70	The addition of halogens and interhalogens on palladacyclopentadienyl complexes bearing quinolyl-thioether as spectator ligands. A kinetic and computational study. Polyhedron, 2016, 113, 25-34.	2.2	11
71	Oxidative addition of organic halides on palladium(0) complexes stabilized by dimethylfumarate and quinoline-based N–P or N–S spectator ligands. Polyhedron, 2015, 102, 94-102.	2.2	12
72	The addition of bromine and iodine to palladacyclopentadienyl complexes bearing bidentate heteroditopic Pâ^'N spectator ligands derived from differently substituted quinolinic frames. The unexpected evolution of the reaction. Dalton Transactions. 2015. 44. 15049-15058.	3.3	20

THOMAS SCATTOLIN

#	Article	IF	CITATIONS
73	Oxidative addition of allyl and propargyl halides on palladium(0) complexes bearing bidentate ligands with quinolinic structure. Journal of Organometallic Chemistry, 2015, 786, 21-30.	1.8	14
74	Synthesis and characterization of palladacyclopentadiene complexes with N-heterocyclic carbene ligands. Journal of Organometallic Chemistry, 2015, 794, 288-300.	1.8	21
75	Air-Stable Dinuclear Iodine-Bridged Pd(I) Complex - Catalyst, Precursor, or Parasite? The Additive Decides. Systematic Nucleophile-Activity Study and Application as Precatalyst in Cross-Coupling. Organometallics, 2015, 34, 5191-5195.	2.3	81
76	A simple synthetic entryway into (<i>N</i> â€heterocyclic carbene)goldâ€steroidyl complexes and their anticancer activity. Applied Organometallic Chemistry, 0, , .	3.5	10