Takeo Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11229252/publications.pdf

Version: 2024-02-01

		147801]	197818	
50	5,312	31		49	
papers	citations	h-index		g-index	
52	52	52		5909	
32	32	32		3707	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Human Mitochondrial tRNAs: Biogenesis, Function, Structural Aspects, and Diseases. Annual Review of Genetics, 2011, 45, 299-329.	7.6	464
2	Pimet, the <i>Drosophila</i> homolog of HEN1, mediates 2′- <i>O</i> -methylation of Piwi- interacting RNAs at their 3′ ends. Genes and Development, 2007, 21, 1603-1608.	5.9	400
3	Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes and Development, 2009, 23, 433-438.	5.9	378
4	Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO Journal, 2002, 21, 6581-6589.	7.8	332
5	Cap-specific terminal <i>N</i> ⁶ -methylation of RNA by an RNA polymerase Il–associated methyltransferase. Science, 2019, 363, .	12.6	262
6	A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Research, 2014, 42, 7346-7357.	14.5	247
7	Modification Defect at Anticodon Wobble Nucleotide of Mitochondrial tRNAsLeu(UUR) with Pathogenic Mutations of Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like Episodes. Journal of Biological Chemistry, 2000, 275, 4251-4257.	3.4	232
8	Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice. Journal of Clinical Investigation, 2011, 121, 3598-3608.	8.2	212
9	The $3\hat{a}\in ^2$ termini of mouse Piwi-interacting RNAs are $2\hat{a}\in ^2$ -O-methylated. Nature Structural and Molecular Biology, 2007, 14, 349-350.	8.2	202
10	Mitochondria-specific RNA-modifying Enzymes Responsible for the Biosynthesis of the Wobble Base in Mitochondrial tRNAs. Journal of Biological Chemistry, 2005, 280, 1613-1624.	3.4	192
11	ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Nucleic Acids Research, 2017, 45, 7401-7415.	14.5	180
12	NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNAMet. Nature Chemical Biology, 2016, 12, 546-551.	8.0	174
13	Human NAT10 Is an ATP-dependent RNA Acetyltransferase Responsible for N4-Acetylcytidine Formation in 18 S Ribosomal RNA (rRNA). Journal of Biological Chemistry, 2014, 289, 35724-35730.	3.4	159
14	Complete chemical structures of human mitochondrial tRNAs. Nature Communications, 2020, 11, 4269.	12.8	144
15	Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. Nature Chemical Biology, 2010, 6, 277-282.	8.0	127
16	5-Hydroxymethylcytosine Plays a Critical Role in Glioblastomagenesis by Recruiting the CHTOP-Methylosome Complex. Cell Reports, 2014, 9, 48-60.	6.4	122
17	Mass Spectrometric Identification and Characterization of RNAâ€Modifying Enzymes. Methods in Enzymology, 2007, 425, 211-229.	1.0	114
18	Metabolic and chemical regulation of tRNA modification associated with taurine deficiency and human disease. Nucleic Acids Research, 2018, 46, 1565-1583.	14.5	110

#	Article	IF	CITATION
19	Wobble modification differences and subcellular localization of tRNAs in Leishmania tarentolae: implication for tRNA sorting mechanism. EMBO Journal, 2003, 22, 657-667.	7.8	106
20	Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Wiley Interdisciplinary Reviews RNA, 2011, 2, 376-386.	6.4	100
21	Cdk5rap1-Mediated 2-Methylthio Modification of Mitochondrial tRNAs Governs Protein Translation and Contributes to Myopathy in Mice and Humans. Cell Metabolism, 2015, 21, 428-442.	16.2	95
22	Biogenesis of glutaminyl-mt tRNA ^{Gln} in human mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16209-16214.	7.1	93
23	Loss of ribosomal RNA modification causes developmental defects in zebrafish. Nucleic Acids Research, 2012, 40, 391-398.	14.5	88
24	Defective Mitochondrial tRNA Taurine Modification Activates Global Proteostress and Leads to Mitochondrial Disease. Cell Reports, 2018, 22, 482-496.	6.4	84
25	A Single Acetylation of 18 S rRNA is Essential for Biogenesis of the Small Ribosomal Subunit in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2014, 289, 26201-26212.	3.4	76
26	Actin-binding protein ABP140 is a methyltransferase for 3-methylcytidine at position 32 of tRNAs in <i>Saccharomyces cerevisiae </i> . Rna, 2011, 17, 1111-1119.	3.5	62
27	Mammalian NSUN2 introduces 5-methylcytidines into mitochondrial tRNAs. Nucleic Acids Research, 2019, 47, 8734-8745.	14.5	60
28	Molecular basis of dihydrouridine formation on tRNA. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19593-19598.	7.1	58
29	Chaplet Column Chromatography: Isolation of a Large Set of Individual RNAs in a Single Step. Methods in Enzymology, 2007, 425, 231-239.	1.0	55
30	Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4707-16.	7.1	52
31	Identification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAs. Nucleic Acids Research, 2017, 45, 2124-2136.	14.5	48
32	Base methylations in the double-stranded RNA by a fused methyltransferase bearing unwinding activity. Nucleic Acids Research, 2012, 40, 4071-4085.	14.5	28
33	Mtu1-Mediated Thiouridine Formation of Mitochondrial tRNAs Is Required for Mitochondrial Translation and Is Involved in Reversible Infantile Liver Injury. PLoS Genetics, 2016, 12, e1006355.	3.5	28
34	N6-methyladenosine (m6A) is an endogenous A3 adenosine receptor ligand. Molecular Cell, 2021, 81, 659-674.e7.	9.7	28
35	Tertiary network in mammalian mitochondrial tRNAAsp revealed by solution probing and phylogeny. Nucleic Acids Research, 2009, 37, 6881-6895.	14.5	27
36	Quantitative PCR Measurement of tRNA 2-Methylthio Modification for Assessing Type 2 Diabetes Risk. Clinical Chemistry, 2013, 59, 1604-1612.	3.2	24

#	Article	IF	CITATIONS
37	Taurine-containing Uridine Modifications in tRNA Anticodons Are Required to Decipher Non-universal Genetic Codes in Ascidian Mitochondria. Journal of Biological Chemistry, 2011, 286, 35494-35498.	3.4	20
38	Impact of intron removal from tRNA genes on Saccharomyces cerevisiae. Nucleic Acids Research, 2019, 47, 5936-5949.	14.5	20
39	Profiling Sex-Specific piRNAs in Zebrafish. Genetics, 2010, 186, 1175-1185.	2.9	19
40	Aminoacyl-tRNA surveillance by EF-Tu in mammalian mitochondria Nucleic Acids Symposium Series, 2007, 51, 41-42.	0.3	17
41	Higd1a improves respiratory function in the models of mitochondrial disorder. FASEB Journal, 2020, 34, 1859-1871.	0.5	16
42	Simple and rapid synthesis of siRNA derived from in vitro transcribed shRNA. Nucleic Acids Symposium Series, 2003, 3, 249-250.	0.3	15
43	Distinct Modified Nucleosides in tRNA ^{Trp} from the Hyperthermophilic Archaeon Thermococcus kodakarensis and Requirement of tRNA m ² G10/m ^{2 G10 Methyltransferase (Archaeal Trm11) for Survival at High Temperatures. Journal of Bacteriology. 2019. 201.}	2.2	15
44	Structural Dynamics of a Mitochondrial tRNA Possessing Weak Thermodynamic Stability. Biochemistry, 2014, 53, 1456-1465.	2.5	9
45	Decoding Mechanism of Non-universal Genetic Codes in Loligo bleekeri Mitochondria. Journal of Biological Chemistry, 2013, 288, 7645-7652.	3.4	8
46	High Sensitive Analysis of Modified Nucleosides by LC/MS Using ESI/Iontrap Mass Spectrometry Journal of the Mass Spectrometry Society of Japan, 1999, 47, 168-176.	0.1	3
47	Mass spectrometric analysis of mRNA 5′ terminal modifications. Methods in Enzymology, 2021, 658, 407-418.	1.0	2
48	Mass spectrometric analysis of 3'-terminal nucleosides of non-coding RNAs. Protocol Exchange, 0, , .	0.3	2
49	Biochemical and Mass Spectrometric Analysis of 3'-End Methylation of piRNAs. Methods in Molecular Biology, 2014, 1093, 59-72.	0.9	1
50	Mass Spectrometric Analysis of Mitochondrial RNA Modifications. Methods in Molecular Biology, 2021, 2192, 89-101.	0.9	1