
David A Fitzpatrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1122861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic responses of two pioneer wood decay fungi to diurnally cycling temperature. Journal of Ecology, 2022, 110, 68-79.	1.9	4
2	Analysis of the effect of Bacillus velezensis culture filtrate on the growth and proteome of Cladobotryum mycophilum. Fungal Biology, 2022, 126, 11-19.	1.1	7
3	Characterising the proteomic response of mushroom pathogen Lecanicillium fungicola to Bacillus velezensis QST 713 and Kos biocontrol agents. European Journal of Plant Pathology, 2022, 163, 369-379.	0.8	5
4	Genomic diversity, chromosomal rearrangements, and interspecies hybridization in the Ogataea polymorpha species complex. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	2
5	Characterisation of the complete mitochondrial genome of the insect-parasitic nematode Heterorhabditis bacteriophora: an idiosyncratic gene order and the presence of multiple long non-coding regions. Nematology, 2021, -1, 1-18.	0.2	0
6	Transmission of mushroom virus X and the impact of virus infection on the transcriptomes and proteomes of different strains of Agaricus bisporus. Fungal Biology, 2021, 125, 704-717.	1.1	11
7	Generation and characterisation of a semi-synthetic siderophore-immunogen conjugate and a derivative recombinant triacetylfusarinine C–specific monoclonal antibody with fungal diagnostic application. Analytical Biochemistry, 2021, 632, 114384.	1.1	3
8	Comparative Genomic and Proteomic Analyses of Three Widespread Phytophthora Species: Phytophthora chlamydospora, Phytophthora gonapodyides and Phytophthora pseudosyringae. Microorganisms, 2020, 8, 653.	1.6	36
9	Proteomic investigation of interhyphal interactions between strains of Agaricus bisporus. Fungal Biology, 2020, 124, 579-591.	1.1	4
10	FISHing in fungi: Visualisation of mushroom virus X in the mycelium of Agaricus bisporus by fluorescence in situ hybridisation. Journal of Microbiological Methods, 2020, 173, 105913.	0.7	4
11	Recent advances in oomycete genomics. Advances in Genetics, 2020, 105, 175-228.	0.8	36
12	Pangloss: A Tool for Pan-Genome Analysis of Microbial Eukaryotes. Genes, 2019, 10, 521.	1.0	14
13	Insights into the transcriptomic response of the plant engineering bacterium Ensifer adhaerens OV14 during transformation. Scientific Reports, 2019, 9, 10344.	1.6	5
14	Characterisation of three novel β-1,3 glucanases from the medically important house dust mite Dermatophagoides pteronyssinus (airmid). Insect Biochemistry and Molecular Biology, 2019, 115, 103242.	1.2	6
15	Proteome and allergenome of the European house dust mite Dermatophagoides pteronyssinus. PLoS ONE, 2019, 14, e0216171.	1.1	26
16	Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of <i>Neurospora crassa</i> . Genetics, 2019, 212, 691-710.	1.2	28
17	Whole Genome Sequence of the Commercially Relevant Mushroom Strain <i>Agaricus bisporus</i> var. <i>bisporus</i> ARP23. G3: Genes, Genomes, Genetics, 2019, 9, 3057-3066.	0.8	13
18	Comparative Analysis of Oomycete Genome Evolution Using the Oomycete Gene Order Browser (OGOB). Genome Biology and Evolution, 2019, 11, 189-206.	1.1	17

DAVID A FITZPATRICK

#	Article	IF	CITATIONS
19	Pan-genome analyses of model fungal species. Microbial Genomics, 2019, 5, .	1.0	59
20	Proteomic analysis of three ubiquitous phytophthora species threatening global forest ecosystems. Access Microbiology, 2019, 1, .	0.2	0
21	Investigating the pangenomes of microbial eukaryotes. Access Microbiology, 2019, 1, .	0.2	Ο
22	Evolutionary, structural and functional analysis of the caleosin/peroxygenase gene family in the Fungi. BMC Genomics, 2018, 19, 976.	1.2	11
23	The involvement of the low-oxygen-activated locus of Burkholderia cenocepacia in adaptation during cystic fibrosis infection. Scientific Reports, 2018, 8, 13386.	1.6	7
24	Genome analysis of the yeast Diutina catenulata, a member of the Debaryomycetaceae/Metschnikowiaceae (CTG-Ser) clade. PLoS ONE, 2018, 13, e0198957.	1.1	13
25	The effect of entomopathogenic fungal culture filtrate on the immune response and haemolymph proteome of the large pine weevil, Hylobius abietis. Insect Biochemistry and Molecular Biology, 2018, 101, 1-13.	1.2	10
26	Phylogenomic Reconstruction of the Oomycete Phylogeny Derived from 37 Genomes. MSphere, 2017, 2, .	1.3	84
27	The effect of entomopathogenic fungal culture filtrate on the immune response of the greater wax moth, Galleria mellonella. Journal of Insect Physiology, 2017, 100, 82-92.	0.9	26
28	Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nature Ecology and Evolution, 2017, 1, 1931-1941.	3.4	145
29	Draft Genome Sequence of <i>Dermatophagoides pteronyssinus</i> , the European House Dust Mite. Genome Announcements, 2017, 5, .	0.8	18
30	Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal. MSphere, 2017, 2, .	1.3	64
31	Multiple Approaches to Phylogenomic Reconstruction of the Fungal Kingdom. Advances in Genetics, 2017, 100, 211-266.	0.8	19
32	Estimation of phylogenetic divergence times in Panagrolaimidae and other nematodes using relaxed molecular clocks calibratedÂwith insect and crustacean fossils. Nematology, 2017, 19, 899-913.	0.2	6
33	Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles. Microorganisms, 2017, 5, 60.	1.6	12
34	Systematic Search for Evidence of Interdomain Horizontal Gene Transfer from Prokaryotes to Oomycete Lineages. MSphere, 2016, 1, .	1.3	22
35	Emergence and evolution of yeast prion and prion-like proteins. BMC Evolutionary Biology, 2016, 16, 24.	3.2	32
36	Antibiotic resistance genes across a wide variety of metagenomes. FEMS Microbiology Ecology, 2016, 92, fiv168.	1.3	129

DAVID A FITZPATRICK

#	Article	IF	CITATIONS
37	Towards understanding the gliotoxin detoxification mechanism: in vivo thiomethylation protects yeast from gliotoxin cytotoxicity. Microbial Cell, 2016, 3, 120-125.	1.4	19
38	Interplay between Gliotoxin Resistance, Secretion, and the Methyl/Methionine Cycle in Aspergillus fumigatus. Eukaryotic Cell, 2015, 14, 941-957.	3.4	48
39	A role for the Parkinson's disease protein DJ-1 as a chaperone and antioxidant in the anhydrobiotic nematode Panagrolaimus superbus. Cell Stress and Chaperones, 2015, 20, 121-137.	1.2	9
40	Global transcript and phenotypic analysis of yeast cells expressing Ssa1, Ssa2, Ssa3 or Ssa4 as sole source of cytosolic Hsp70-Ssa chaperone activity. BMC Genomics, 2014, 15, 194.	1.2	36
41	RNA-seq reveals the pan-transcriptomic impact of attenuating the gliotoxin self-protection mechanism in Aspergillus fumigatus. BMC Genomics, 2014, 15, 894.	1.2	44
42	A Pluralistic Account of Homology: Adapting the Models to the Data. Molecular Biology and Evolution, 2014, 31, 501-516.	3.5	37
43	Different outcomes for the MYB floral symmetry genes DIVARICATA and RADIALIS during the evolution of derived actinomorphy in P lantago. New Phytologist, 2014, 202, 716-725.	3.5	28
44	Regulation of Nonribosomal Peptide Synthesis: bis-Thiomethylation Attenuates Gliotoxin Biosynthesis in Aspergillus fumigatus. Chemistry and Biology, 2014, 21, 999-1012.	6.2	79
45	The evolutionary history of the genes involved in the biosynthesis of the antioxidant ergothioneine. Gene, 2014, 549, 161-170.	1.0	48
46	Epidemiological and virological investigations of equine influenza outbreaks in <scp>I</scp> reland (2010–2012). Influenza and Other Respiratory Viruses, 2013, 7, 61-72.	1.5	37
47	Genomic and Proteomic Dissection of the Ubiquitous Plant Pathogen, <i>Armillaria mellea</i> : Toward a New Infection Model System. Journal of Proteome Research, 2013, 12, 2552-2570.	1.8	85
48	A comparative study of the molecular evolution of signalling pathway members across olfactory, gustatory and photosensory modalities. Journal of Genetics, 2013, 92, 327-334.	0.4	2
49	Insight into the Family of Na+/Ca2+ Exchangers of <i>Caenorhabditis elegans</i> . Genetics, 2013, 195, 611-619.	1.2	16
50	Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biology, 2013, 14, R11.	13.9	296
51	Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus. Nucleic Acids Research, 2012, 40, 7806-7820.	6.5	5
52	Investigating the Relationship between Topology and Evolution in a Dynamic Nematode Odor Genetic Network. International Journal of Evolutionary Biology, 2012, 2012, 1-8.	1.0	2
53	Horizontal gene transfer in fungi. FEMS Microbiology Letters, 2012, 329, 1-8.	0.7	262
54	Assessment of Inactivating Stop Codon Mutations in Forty Saccharomyces cerevisiae Strains: Implications for [PSI+] Prion- Mediated Phenotypes. PLoS ONE, 2011, 6, e28684.	1.1	13

DAVID A FITZPATRICK

#	Article	IF	CITATIONS
55	The copper regulon of the human fungal pathogen <i>Cryptococcus neoformans</i> H99. Molecular Microbiology, 2011, 81, 1560-1576.	1.2	105
56	Reconstructing the Fungal Tree of Life Using Phylogenomics and a Preliminary Investigation of the Distribution of Yeast Prion-Like Proteins in the Fungal Kingdom. Journal of Molecular Evolution, 2011, 73, 116-133.	0.8	43
57	Universally Distributed Single-Copy Genes Indicate a Constant Rate of Horizontal Transfer. PLoS ONE, 2011, 6, e22099.	1.1	99
58	Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser. BMC Genomics, 2010, 11, 290.	1.2	86
59	Comparative Genomic Analysis of Pathogenic Yeasts and the Evolution of Virulence. , 2010, , 1-18.		3
60	Evolution of flower shape in Plantago lanceolata. Plant Molecular Biology, 2009, 71, 241-250.	2.0	49
61	Lines of Evidence for Horizontal Gene Transfer of a Phenazine Producing Operon into Multiple Bacterial Species. Journal of Molecular Evolution, 2009, 68, 171-185.	0.8	37
62	Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009, 459, 657-662.	13.7	963
63	Gene and genome trees conflict at many levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2209-2219.	1.8	15
64	Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis. BMC Evolutionary Biology, 2008, 8, 181.	3.2	57
65	The Molecular Phylogeny of a Nematode-Specific Clade of Heterotrimeric G-Protein α-Subunit Genes. Journal of Molecular Evolution, 2006, 63, 87-94.	0.8	18
66	Multiple lineage specific expansions within the guanylyl cyclase gene family. BMC Evolutionary Biology, 2006, 6, 26.	3.2	42
67	A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evolutionary Biology, 2006, 6, 99.	3.2	428
68	Cortical cartography revisited: a frequency perspective on the functional architecture of visual cortex. Progress in Brain Research, 2006, 154, 121-134.	0.9	26
69	Genome Phylogenies Indicate a Meaningful α-Proteobacterial Phylogeny and Support a Grouping of the Mitochondria with the Rickettsiales. Molecular Biology and Evolution, 2006, 23, 74-85.	3.5	133
70	Evaluation of Whether Accelerated Protein Evolution in Chordates Has Occurred before, after, or Simultaneously with Gene Duplication. Molecular Biology and Evolution, 2006, 24, 315-323.	3.5	14
71	Evidence of Positive Darwinian Selection in Omp85, a Highly ConservedBacterial Outer Membrane Protein Essential for Cell Viability. Journal of Molecular Evolution, 2005, 60, 268-273.	0.8	18
72	Evidence of Positive Darwinian Selection in Putative Meningococcal Vaccine Antigens. Journal of Molecular Evolution, 2005, 61, 90-98.	0.8	9

#	Article	IF	CITATIONS
73	The anhydrobiotic potential and molecular phylogenetics of species and strains of Panagrolaimus (Nematoda, Panagrolaimidae). Journal of Experimental Biology, 2005, 208, 2433-2445.	0.8	60
74	Does a tree–like phylogeny only exist at the tips in the prokaryotes?. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2551-2558.	1.2	114
75	Fatty acid biosynthesis in Mycobacterium tuberculosis: Lateral gene transfer, adaptive evolution, and gene duplication. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10320-10325.	3.3	119