List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11227755/publications.pdf Version: 2024-02-01

YU-MING LIN

#	Article	IF	CITATIONS
1	How Important Is the Metal–Semiconductor Contact for Schottky Barrier Transistors: A Case Study on Few-Layer Black Phosphorus?. ACS Omega, 2017, 2, 4173-4179.	3.5	24
2	Epitaxial Graphene Nanoribbon Array Fabrication Using BCP-Assisted Nanolithography. ACS Nano, 2012, 6, 6786-6792.	14.6	68
3	State-of-the-Art Graphene High-Frequency Electronics. Nano Letters, 2012, 12, 3062-3067.	9.1	371
4	Quantum Behavior of Graphene Transistors near the Scaling Limit. Nano Letters, 2012, 12, 1417-1423.	9.1	77
5	Three-Terminal Graphene Negative Differential Resistance Devices. ACS Nano, 2012, 6, 2610-2616.	14.6	153
6	Electrical characterization of wafer-scale epitaxial graphene and its RF applications. , 2011, , .		1
7	Ultimate RF Performance Potential of Carbon Electronics. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2739-2750.	4.6	107
8	Wafer-Scale Graphene Integrated Circuit. Science, 2011, 332, 1294-1297.	12.6	812
9	Enhanced Performance in Epitaxial Graphene FETs With Optimized Channel Morphology. IEEE Electron Device Letters, 2011, 32, 1343-1345.	3.9	80
10	The origins and limits of metal–graphene junction resistance. Nature Nanotechnology, 2011, 6, 179-184.	31.5	730
11	High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 472, 74-78.	27.8	813
12	Charge trapping and scattering in epitaxial graphene. Physical Review B, 2011, 84, .	3.2	62
13	Multicarrier transport in epitaxial multilayer graphene. Applied Physics Letters, 2010, 97, 112107.	3.3	50
14	High on-off ratio Bilayer Graphene complementary field effect transistors. , 2010, , .		3
15	Nanowires. , 2010, , 119-167.		13
16	Graphene field-effect transistors with self-aligned gates. Applied Physics Letters, 2010, 97, 013103.	3.3	84
17	Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature. Nano Letters, 2010, 10, 715-718.	9.1	1,191
18	Controllable p-n Junction Formation in Monolayer Graphene Using Electrostatic Substrate Engineering. Nano Letters, 2010, 10, 4634-4639.	9.1	148

#	Article	IF	CITATIONS
19	Graphene nanophotonics. , 2010, , .		1
20	Intrinsic limits of subthreshold slope in biased bilayer graphene transistor. Applied Physics Letters, 2010, 96, .	3.3	8
21	Dual-Gate Graphene FETs With \$f_{T}\$ of 50 GHz. IEEE Electron Device Letters, 2010, 31, 68-70.	3.9	126
22	Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 985-992.	1.2	95
23	Graphene and carbon nanotube photonics. , 2009, , .		0
24	Behavior of a chemically doped graphene junction. Applied Physics Letters, 2009, 94, .	3.3	115
25	Ultrafast graphene photodetector. Nature Nanotechnology, 2009, 4, 839-843.	31.5	2,748
26	Operation of Graphene Transistors at Gigahertz Frequencies. Nano Letters, 2009, 9, 422-426.	9.1	982
27	Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors. Nano Letters, 2009, 9, 4474-4478.	9.1	341
28	Chemical Doping and Electronâ^'Hole Conduction Asymmetry in Graphene Devices. Nano Letters, 2009, 9, 388-392.	9.1	458
29	Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor. Nano Letters, 2009, 9, 1039-1044.	9.1	543
30	Development of graphene FETs for high frequency electronics. , 2009, , .		22
31	Electrical observation of subband formation in graphene nanoribbons. Physical Review B, 2008, 78, .	3.2	199
32	Strong Suppression of Electrical Noise in Bilayer Graphene Nanodevices. Nano Letters, 2008, 8, 2119-2125.	9.1	365
33	Oxide-Induced Noise in Carbon Nanotube Devices. Device Research Conference, IEEE Annual, 2007, , .	0.0	0
34	Impact of oxide substrate on electrical and optical properties of carbon nanotube devices. Nanotechnology, 2007, 18, 295202.	2.6	47
35	1/f Noise in Carbon Nanotube Devices—On the Impact of Contacts and Device Geometry. IEEE Nanotechnology Magazine, 2007, 6, 368-373.	2.0	38
36	Gate Work Function Engineering for Nanotube-Based Circuits. Digest of Technical Papers - IEEE International Solid-State Circuits Conference, 2007, , .	0.0	6

#	Article	IF	CITATIONS
37	Nanowires. , 2007, , 113-160.		9
38	Electrical transport and noise in semiconducting carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 72-77.	2.7	27
39	Graphene nano-ribbon electronics. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 40, 228-232.	2.7	1,410
40	Low-Frequency Current Fluctuations in Individual Semiconducting Single-Wall Carbon Nanotubes. Nano Letters, 2006, 6, 930-936.	9.1	122
41	An Integrated Logic Circuit Assembled on a Single Carbon Nanotube. Science, 2006, 311, 1735-1735.	12.6	514
42	Comparing Carbon Nanotube Transistors—The Ideal Choice: A Novel Tunneling Device Design. IEEE Transactions on Electron Devices, 2005, 52, 2568-2576.	3.0	291
43	High-Performance Carbon Nanotube Field-Effect Transistor With Tunable Polarities. IEEE Nanotechnology Magazine, 2005, 4, 481-489.	2.0	440
44	The Role of Metalâ^'Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors. Nano Letters, 2005, 5, 1497-1502.	9.1	621
45	High-performance dual-gate carbon nanotube FETs with 40-nm gate length. IEEE Electron Device Letters, 2005, 26, 823-825.	3.9	107
46	Nanowires. , 2004, , 99-146.		12
47	Ambipolar-to-Unipolar Conversion of Carbon Nanotube Transistors by Gate Structure Engineering. Nano Letters, 2004, 4, 947-950.	9.1	119
48	Nanowires. , 2004, , 99-145.		3
49	Determination of carrier density in Te-doped Bi nanowires. Applied Physics Letters, 2003, 83, 3567-3569.	3.3	12
50	Thermoelectric properties of superlattice nanowires. Physical Review B, 2003, 68, .	3.2	295
51	Making electrical contacts to nanowires with a thick oxide coating. Nanotechnology, 2002, 13, 653-658.	2.6	124
52	Transport Properties of Superlattice Nanowires and Their Potential for Thermoelectric Applications. Materials Research Society Symposia Proceedings, 2002, 737, 11.	0.1	2
53	Transport Properties and Observation of Semimetal-Semiconductor Transition in Bi-based Nanowires. Materials Research Society Symposia Proceedings, 2002, 737, 385.	0.1	1
54	Thermoelectric Nanowires By Template Synthesis: Fabrication, Contacts and Properties. Materials Research Society Symposia Proceedings, 2002, 739, 7241.	0.1	0

#	Article	IF	CITATIONS
55	Semimetal–semiconductor transition in Bi1â^'xSbx alloy nanowires and their thermoelectric properties. Applied Physics Letters, 2002, 81, 2403-2405.	3.3	170
56	Anomalously high thermoelectric figure of merit in Bi1â^'xSbx nanowires by carrier pocket alignment. Applied Physics Letters, 2001, 79, 81-83.	3.3	234
57	4-Point Resistance Measurements of Individual Bi Nanowires. Materials Research Society Symposia Proceedings, 2001, 635, C5.7.1.	0.1	5
58	Electronic Properties of Bismuth Nanowires. Materials Research Society Symposia Proceedings, 2001, 679, 1.	0.1	1
59	Thermoelectric Transport Properties of Individual Bismuth Nanowires. Materials Research Society Symposia Proceedings, 2001, 691, 1.	0.1	0
60	Thermoelectric Properties of Bi1-xSbx Nanowire Arrays. Materials Research Society Symposia Proceedings, 2001, 691, 1.	0.1	1
61	Thermoelectric Nanowires by Electrochemical Deposition. Materials Research Society Symposia Proceedings, 2001, 691, 1.	0.1	2
62	Fabrication, structure, and transport properties of nanowires. Advances in Chemical Engineering, 2001, 27, 167-203.	0.9	7
63	Transport properties of Bi1â^xSbx alloy nanowires synthesized by pressure injection. Applied Physics Letters, 2001, 79, 677-679.	3.3	49
64	Transport properties of antimony nanowires. Physical Review B, 2001, 63, .	3.2	62
65	Nanofabrication Using Self-Assembled Alumina Templates. Materials Research Society Symposia Proceedings, 2000, 636, 471.	0.1	8
66	Transport properties of Bi nanowire arrays. Applied Physics Letters, 2000, 76, 3944-3946.	3.3	177
67	Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Physical Review B, 2000, 62, 4610-4623.	3.2	483
68	Bismuth nanowire arrays: Synthesis and galvanomagnetic properties. Physical Review B, 2000, 61, 2921-2930.	3.2	329
69	Experimental investigation of thermoelectric properties of Bi/sub 1-x/Sb/sub x/ nanowire arrays. , 0, , .		0
70	Segmented nanowires: a theoretical study of thermoelectric properties. , 0, , .		1